910 resultados para Semigroup of linear operators
Resumo:
The problem of stability analysis for a class of neutral systems with mixed time-varying neutral, discrete and distributed delays and nonlinear parameter perturbations is addressed. By introducing a novel Lyapunov-Krasovskii functional and combining the descriptor model transformation, the Leibniz-Newton formula, some free-weighting matrices, and a suitable change of variables, new sufficient conditions are established for the stability of the considered system, which are neutral-delay-dependent, discrete-delay-range dependent, and distributeddelay-dependent. The conditions are presented in terms of linear matrix inequalities (LMIs) and can be efficiently solved using convex programming techniques. Two numerical examples are given to illustrate the efficiency of the proposed method
Resumo:
We introduce disk matrices which encode the knotting of all subchains in circular knot configurations. The disk matrices allow us to dissect circular knots into their subknots, i.e. knot types formed by subchains of the global knot. The identification of subknots is based on the study of linear chains in which a knot type is associated to the chain by means of a spatially robust closure protocol. We characterize the sets of observed subknot types in global knots taking energy-minimized shapes such as KnotPlot configurations and ideal geometric configurations. We compare the sets of observed subknots to knot types obtained by changing crossings in the classical prime knot diagrams. Building upon this analysis, we study the sets of subknots in random configurations of corresponding knot types. In many of the knot types we analyzed, the sets of subknots from the ideal geometric configurations are found in each of the hundreds of random configurations of the same global knot type. We also compare the sets of subknots observed in open protein knots with the subknots observed in the ideal configurations of the corresponding knot type. This comparison enables us to explain the specific dispositions of subknots in the analyzed protein knots.
Resumo:
In this paper, I consider a general and informationally effcient approach to determine the optimal access rule and show that there exists a simple rule that achieves the Ramsey outcome as the unique equilibrium when networks compete in linear prices without network-based price discrimination. My approach is informationally effcient in the sense that the regulator is required to know only the marginal cost structure, i.e. the marginal cost of making and terminating a call. The approach is general in that access prices can depend not only on the marginal costs but also on the retail prices, which can be observed by consumers and therefore by the regulator as well. In particular, I consider the set of linear access pricing rules which includes any fixed access price, the Efficient Component Pricing Rule (ECPR) and the Modified ECPR as special cases. I show that in this set, there is a unique access rule that achieves the Ramsey outcome as the unique equilibrium as long as there exists at least a mild degree of substitutability among networks' services.
Resumo:
Minimax lower bounds for concept learning state, for example, thatfor each sample size $n$ and learning rule $g_n$, there exists a distributionof the observation $X$ and a concept $C$ to be learnt such that the expectederror of $g_n$ is at least a constant times $V/n$, where $V$ is the VC dimensionof the concept class. However, these bounds do not tell anything about therate of decrease of the error for a {\sl fixed} distribution--concept pair.\\In this paper we investigate minimax lower bounds in such a--stronger--sense.We show that for several natural $k$--parameter concept classes, includingthe class of linear halfspaces, the class of balls, the class of polyhedrawith a certain number of faces, and a class of neural networks, for any{\sl sequence} of learning rules $\{g_n\}$, there exists a fixed distributionof $X$ and a fixed concept $C$ such that the expected error is larger thana constant times $k/n$ for {\sl infinitely many n}. We also obtain suchstrong minimax lower bounds for the tail distribution of the probabilityof error, which extend the corresponding minimax lower bounds.
Resumo:
This work studies the organization of less-than-truckload trucking from a contractual point of view. We show that the huge number of owner-operators working in the industry hides a much less fragmented reality. Most of those owner-operators are quasi-integrated in higher organizational structures. This hybrid form is generally more efficient than vertical integration because, in the Spanish institutional environment, it lessens serious moral hazard problems, related mainly to the use of the vehicles, and makes it possible to reach economies of scale and density. Empirical evidence suggests that what leads organizations to vertically integrate is not the presence of such economies but hold-up problems, related to the existence of specific assets. Finally, an international comparison hints that institutional constraints are able to explain differences in the evolution of vertical integration across countries.
Resumo:
We show that if performance measures in a stochastic scheduling problem satisfy a set of so-called partial conservation laws (PCL), which extend previously studied generalized conservation laws (GCL), then the problem is solved optimally by a priority-index policy for an appropriate range of linear performance objectives, where the optimal indices are computed by a one-pass adaptive-greedy algorithm, based on Klimov's. We further apply this framework to investigate the indexability property of restless bandits introduced by Whittle, obtaining the following results: (1) we identify a class of restless bandits (PCL-indexable) which are indexable; membership in this class is tested through a single run of the adaptive-greedy algorithm, which also computes the Whittle indices when the test is positive; this provides a tractable sufficient condition for indexability; (2) we further indentify the class of GCL-indexable bandits, which includes classical bandits, having the property that they are indexable under any linear reward objective. The analysis is based on the so-called achievable region method, as the results follow fromnew linear programming formulations for the problems investigated.
Resumo:
This paper presents a comparative analysis of linear and mixed modelsfor short term forecasting of a real data series with a high percentage of missing data. Data are the series of significant wave heights registered at regular periods of three hours by a buoy placed in the Bay of Biscay.The series is interpolated with a linear predictor which minimizes theforecast mean square error. The linear models are seasonal ARIMA models and themixed models have a linear component and a non linear seasonal component.The non linear component is estimated by a non parametric regression of dataversus time. Short term forecasts, no more than two days ahead, are of interestbecause they can be used by the port authorities to notice the fleet.Several models are fitted and compared by their forecasting behavior.
Resumo:
This paper considers a general and informationally efficient approach to determine the optimal access pricing rule for interconnected networks. It shows that there exists a simple rule that achieves the Ramsey outcome as the unique equilibrium when networks compete in linear prices without network-based price discrimination. The approach is informationally efficient in the sense that the regulator is required to know only the marginal cost structure, i.e. the marginal cost of making and terminating a call. The approach is general in that access prices can depend not only on the marginal costs but also on the retail prices, which can be observed by consumers and therefore by the regulator as well. In particular, I consider the set of linear access pricing rules which includes any fixed access price, the Efficient Component Pricing Rule (ECPR) and the Modified ECPR as special cases. I show that in this set, there is a unique rule that implements the Ramsey outcome as the unique equilibrium independently of the underlying demand conditions.
Resumo:
In pediatric echocardiography, cardiac dimensions are often normalized for weight, height, or body surface area (BSA). The combined influence of height and weight on cardiac size is complex and likely varies with age. We hypothesized that increasing weight for height, as represented by body mass index (BMI) adjusted for age, is poorly accounted for in Z scores normalized for weight, height, or BSA. We aimed to evaluate whether a bias related to BMI was introduced when proximal aorta diameter Z scores are derived from bivariate models (only one normalizing variable), and whether such a bias was reduced when multivariable models are used. We analyzed 1,422 echocardiograms read as normal in children ≤18 years. We computed Z scores of the proximal aorta using allometric, polynomial, and multivariable models with four body size variables. We then assessed the level of residual association of Z scores and BMI adjusted for age and sex. In children ≥6 years, we found a significant residual linear association with BMI-for-age and Z scores for most regression models. Only a multivariable model including weight and height as independent predictors produced a Z score free of linear association with BMI. We concluded that a bias related to BMI was present in Z scores of proximal aorta diameter when normalization was done using bivariate models, regardless of the regression model or the normalizing variable. The use of multivariable models with weight and height as independent predictors should be explored to reduce this potential pitfall when pediatric echocardiography reference values are evaluated.
Resumo:
[spa] Se presenta el operador OWA generalizado inducido (IGOWA). Es un nuevo operador de agregación que generaliza al operador OWA a través de utilizar las principales características de dos operadores muy conocidos como son el operador OWA generalizado y el operador OWA inducido. Entonces, este operador utiliza medias generalizadas y variables de ordenación inducidas en el proceso de reordenación. Con esta formulación, se obtiene una amplia gama de operadores de agregación que incluye a todos los casos particulares de los operadores IOWA y GOWA, y otros casos particulares. A continuación, se realiza una generalización mayor al operador IGOWA a través de utilizar medias cuasi-aritméticas. Finalmente, también se desarrolla un ejemplo numérico del nuevo modelo en un problema de toma de decisiones financieras.
Resumo:
The aim of this paper is twofold. First, we study the determinants of economic growth among a wide set of potential variables for the Spanish provinces (NUTS3). Among others, we include various types of private, public and human capital in the group of growth factors. Also,we analyse whether Spanish provinces have converged in economic terms in recent decades. Thesecond objective is to obtain cross-section and panel data parameter estimates that are robustto model speci¯cation. For this purpose, we use a Bayesian Model Averaging (BMA) approach.Bayesian methodology constructs parameter estimates as a weighted average of linear regression estimates for every possible combination of included variables. The weight of each regression estimate is given by the posterior probability of each model.
Resumo:
[spa] Se presenta el operador OWA generalizado inducido (IGOWA). Es un nuevo operador de agregación que generaliza al operador OWA a través de utilizar las principales características de dos operadores muy conocidos como son el operador OWA generalizado y el operador OWA inducido. Entonces, este operador utiliza medias generalizadas y variables de ordenación inducidas en el proceso de reordenación. Con esta formulación, se obtiene una amplia gama de operadores de agregación que incluye a todos los casos particulares de los operadores IOWA y GOWA, y otros casos particulares. A continuación, se realiza una generalización mayor al operador IGOWA a través de utilizar medias cuasi-aritméticas. Finalmente, también se desarrolla un ejemplo numérico del nuevo modelo en un problema de toma de decisiones financieras.
Resumo:
The aim of this paper is twofold. First, we study the determinants of economic growth among a wide set of potential variables for the Spanish provinces (NUTS3). Among others, we include various types of private, public and human capital in the group of growth factors. Also,we analyse whether Spanish provinces have converged in economic terms in recent decades. Thesecond objective is to obtain cross-section and panel data parameter estimates that are robustto model speci¯cation. For this purpose, we use a Bayesian Model Averaging (BMA) approach.Bayesian methodology constructs parameter estimates as a weighted average of linear regression estimates for every possible combination of included variables. The weight of each regression estimate is given by the posterior probability of each model.
Resumo:
We present static and dynamical properties of linear vortices in 4He droplets obtained from density functional calculations. By comparing the adsorption properties of different atomic impurities embedded in pure droplets and in droplets where a quantized vortex has been created, we suggest that Ca atoms should be the dopant of choice to detect vortices by means of spectroscopic experiments.
Resumo:
We study second-order properties of linear oscillators driven by exponentially correlated noise. We focus our attention on dynamical exponents and crossovers and also on resonance phenomena that appear when the driving noise is dichotomous. We also obtain the power spectrum and show its different behaviors according to the color of the noise.