951 resultados para Secondary bonding interaction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

UPS and XPS studies indicate that carbon monoxide preferentially adsorbs dissociatively on the surfaces of the metallic glasses, Ni76B12Si12 and Fe40Ni38Mo4B18, suggesting that such metglasses could be potential catalysts for some of the reactions involving CO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The addition of guanosine 5-monophosphate (5′-GMP) to an aqueous solution of Mn2+ ions results in a decrease in ESR signal intensity and an increase in line-width of Mn2+ ions. This can be interpreted in terms of stepwise formation of outersphere and inner-sphere complexes as When Mg2+ is added to a mixture of Mn2+ and 5′-GMP, ESR signal intensity increases, presumably due to the replacement of Mn2+ by Mg2+ in the complex. From the variation of ESR signal intensity as a function of concentration of Mg2+, the product K1K2 for the magnesium complex i s calculated as 125 M−1. This difference in stability constants may indicate that both phosphate group and guanine base are involved in the formation of Mn2+-5′-GMP complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study explored pre-service secondary science teachers’ perceptions of classroom emotional climate in the context of the Bhutanese macro-social policy of Gross National Happiness. Drawing upon sociological perspectives of human emotions and using Interaction Ritual Theory this study investigated how pre-service science teachers may be supported in their professional development. It was a multi-method study involving video and audio recordings of teaching episodes supported by interviews and the researcher’s diary. Students also registered their perceptions of the emotional climate of their classroom at 3-minute intervals using audience response technology. In this way, emotional events were identified for video analysis. The findings of this study highlighted that the activities pre-service teachers engaged in matter to them. Positive emotional climate was identified in activities involving students’ presentations using video clips and models, coteaching, and interactive whole class discussions. Decreases in emotional climate were identified during formal lectures and when unprepared presenters led presentations. Emotions such as frustration and disappointment characterized classes with negative emotional climate. The enabling conditions to sustain a positive emotional climate are identified. Implications for sustaining macro-social policy about Gross National Happiness are considered in light of the climate that develops in science teacher education classes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This doctoral thesis describes the development of a miniaturized capillary electrochromatography (CEC) technique suitable for the study of interactions between various nanodomains of biological importance. The particular focus of the study was low-density lipoprotein (LDL) particles and their interaction with components of the extracellular matrix (ECM). LDL transports cholesterol to the tissues through the blood circulation, but when the LDL level becomes too high the particles begin to permeate and accumulate in the arteries. Through binding sites on apolipoprotein B-100 (apoB-100), LDL interacts with components of the ECM, such as proteoglycans (PGs) and collagen, in what is considered the key mechanism in the retention of lipoproteins and onset of atherosclerosis. Hydrolytic enzymes and oxidizing agents in the ECM may later successively degrade the LDL surface. Metabolic diseases such as diabetes may provoke damage of the ECM structure through the non-enzymatic reaction of glucose with collagen. In this work, fused silica capillaries of 50 micrometer i.d. were successfully coated with LDL and collagen, and steroids and apoB-100 peptide fragments were introduced as model compounds for interaction studies. The LDL coating was modified with copper sulphate or hydrolytic enzymes, and the interactions of steroids with the native and oxidized lipoproteins were studied. Lipids were also removed from the LDL particle coating leaving behind an apoB-100 surface for further studies. The development of collagen and collagen decorin coatings was helpful in the elucidation of the interactions of apoB-100 peptide fragments with the primary ECM component, collagen. Furthermore, the collagen I coating provided a good platform for glycation studies and for clarification of LDL interactions with native and modified collagen. All methods developed are inexpensive, requiring just small amounts of biomaterial. Moreover, the experimental conditions in CEC are easily modified, and the analyses can be carried out in a reasonable time frame. Other techniques were employed to support and complement the CEC studies. Scanning electron microscopy and atomic force microscopy provided crucial visual information about the native and modified coatings. Asymmetrical flow field-flow fractionation enabled size measurements of the modified lipoproteins. Finally, the CEC results were exploited to develop new sensor chips for a continuous flow quartz crystal microbalance technique, which provided complementary information about LDL ECM interactions. This thesis demonstrates the potential of CEC as a valuable and flexible technique for surface interaction studies. Further, CEC can serve as a novel microreactor for the in situ modification of LDL and collagen coatings. The coatings developed in this study provide useful platforms for a diversity of future investigations on biological nanodomains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main purpose of the research was to illustrate chemistry matriculation examination questions as a summative assessment tool, and represent how the questions have evolved over the years. Summative assessment and its various test item classifications, Finnish goal-oriented curriculum model, and Bloom’s Revised Taxonomy of Cognitive Objectives formed the theoretical framework for the research. The research data consisted of 257 chemistry questions from 28 matriculation examinations between 1996 and 2009. The analysed test questions were formulated according to the national upper secondary school chemistry curricula 1994, and 2003. Qualitative approach and theory-driven content analysis method were employed in the research. Peer review was used to guarantee the reliability of the results. The research was guided by the following questions: (a) What kinds of test item formats are used in chemistry matriculation examinations? (b) How the fundamentals of chemistry are included in the chemistry matriculation examination questions? (c) What kinds of cognitive knowledge and skills do the chemistry matriculation examination questions require? The research indicates that summative assessment was used diversely in chemistry matriculation examinations. The tests included various test item formats, and their combinations. The majority of the test questions were constructed-response items that were either verbal, quantitative, or experimental questions, symbol questions, or combinations of the aforementioned. The studied chemistry matriculation examinations seldom included selected-response items that can be either multiple-choice, alternate choice, or matching items. The relative emphasis of the test item formats differed slightly depending on whether the test was a part of an extensive general studies battery of tests in sciences and humanities, or a subject-specific test. The classification framework developed in the research can be applied in chemistry and science education, and also in educational research. Chemistry matriculation examinations are based on the goal-oriented curriculum model, and cover relatively well the fundamentals of chemistry included in the national curriculum. Most of the test questions related to the symbolism of chemical equation, inorganic and organic reaction types and applications, the bonding and spatial structure in organic compounds, and stoichiometry problems. Only a few questions related to electrolysis, polymers, or buffer solutions. None of the test questions related to composites. There were not any significant differences in the emphasis between the tests formulated according to the national curriculum 1994 or 2003. Chemistry matriculation examinations are cognitively demanding. The research shows that the majority of the test questions require higher-order cognitive skills. Most of the questions required analysis of procedural knowledge. The questions that only required remembering or processing metacognitive knowledge, were not included in the research data. The required knowledge and skill level varied slightly between the test questions in the extensive general studies battery of tests in sciences and humanities, and subject-specific tests administered since 2006. The proportion of the Finnish chemistry matriculation examination questions requiring higher-order cognitive knowledge and skills is very large compared to what is discussed in the research literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geometric constraints present in A2BO4 compounds with the tetragonal-T structure of K2NiF4 impose a strong pressure on the B---OII---B bonds and a stretching of the A---OI---A bonds in the basal planes if the tolerance factor is t congruent with RAO/√2 RBO < 1, where RAO and RBO are the sums of the A---O and B---O ionic radii. The tetragonal-T phase of La2NiO4 becomes monoclinic for Pr2NiO4, orthorhombic for La2CuO4, and tetragonal-T′ for Pr2CuO4. The atomic displacements in these distorted phases are discussed and rationalized in terms of the chemistry of the various compounds. The strong pressure on the B---OII---B bonds produces itinerant σ*x2−y2 bands and a relative stabilization of localized dz2 orbitals. Magnetic susceptibility and transport data reveal an intersection of the Fermi energy with the d2z2 levels for half the copper ions in La2CuO4; this intersection is responsible for an intrinsic localized moment associated with a configuration fluctuation; below 200 K the localized moment smoothly vanishes with decreasing temperature as the d2z2 level becomes filled. In La2NiO4, the localized moments for half-filled dz2 orbitals induce strong correlations among the σ*x2−y2 electrons above Td reverse similar, equals 200 K; at lower temperatures the σ*x2−y2 electrons appear to contribute nothing to the magnetic susceptibility, which obeys a Curie-Weiss law giving a μeff corresponding to S = 1/2, but shows no magnetic order to lowest temperatures. These surprising results are verified by comparison with the mixed systems La2Ni1−xCuxO4 and La2−2xSr2xNi1−xTixO4. The onset of a charge-density wave below 200 K is proposed for both La2CuO4 and La2NiO4, but the atomic displacements would be short-range cooperative in mixed systems. The semiconductor-metallic transitions observed in several systems are found in many cases to obey the relation Ea reverse similar, equals kTmin, where varrho = varrho0exp(−Ea/kT) and Tmin is the temperature of minimum resistivity varrho. This relation is interpreted in terms of a diffusive charge-carrier mobility with Ea reverse similar, equals ΔHm reverse similar, equals kT at T = Tmin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is often assumed that teachers in rural and remote schools are at a disadvantage when it comes to accessing professional development. But is there sufficient evidence to support this assumption? This paper reports findings from two national surveys comparing the professional development priorities of primary and secondary science teachers from metropolitan, provincial and remote schools. The research found that while teachers' unmet needs for some PD opportunities increased significantly with school remoteness, this was not the case for all opportunities. In teasing out the different PD priorities of primary and secondary science teachers, the paper provides evidence to help education authorities and professional organisations address the specific needs of teachers in different locations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The importance of intermolecular interactions to chemistry, physics, and biology is difficult to overestimate. Without intermolecular forces, condensed phase matter could not form. The simplest way to categorize different types of intermolecular interactions is to describe them using van der Waals and hydrogen bonded (H-bonded) interactions. In the H-bond, the intermolecular interaction appears between a positively charged hydrogen atom and electronegative fragments and it originates from strong electrostatic interactions. H-bonding is important when considering the properties of condensed phase water and in many biological systems including the structure of DNA and proteins. Vibrational spectroscopy is a useful tool for studying complexes and the solvation of molecules. Vibrational frequency shift has been used to characterize complex formation. In an H-bonded system A∙∙∙H-X (A and X are acceptor and donor species, respectively), the vibrational frequency of the H-X stretching vibration usually decreases from its value in free H-X (red-shift). This frequency shift has been used as evidence for H-bond formation and the magnitude of the shift has been used as an indicator of the H-bonding strength. In contrast to this normal behavior are the blue-shifting H-bonds, in which the H-X vibrational frequency increases upon complex formation. In the last decade, there has been active discussion regarding these blue-shifting H-bonds. Noble-gases have been considered inert due to their limited reactivity with other elements. In the early 1930 s, Pauling predicted the stable noble-gas compounds XeF6 and KrF6. It was not until three decades later Neil Bartlett synthesized the first noble-gas compound, XePtF6, in 1962. A renaissance of noble-gas chemistry began in 1995 with the discovery of noble-gas hydride molecules at the University of Helsinki. The first hydrides were HXeCl, HXeBr, HXeI, HKrCl, and HXeH. These molecules have the general formula of HNgY, where H is a hydrogen atom, Ng is a noble-gas atom (Ar, Kr, or Xe), and Y is an electronegative fragment. At present, this class of molecules comprises 23 members including both inorganic and organic compounds. The first and only argon-containing neutral chemical compound HArF was synthesized in 2000 and its properties have since been investigated in a number of studies. A helium-containing chemical compound, HHeF, was predicted computationally, but its lifetime has been predicted to be severely limited by hydrogen tunneling. Helium and neon are the only elements in the periodic table that do not form neutral, ground state molecules. A noble-gas matrix is a useful medium in which to study unstable and reactive species including ions. A solvated proton forms a centrosymmetric NgHNg+ (Ng = Ar, Kr, and Xe) structure in a noble-gas matrix and this is probably the simplest example of a solvated proton. Interestingly, the hypothetical NeHNe+ cation is isoelectronic with the water-solvated proton H5O2+ (Zundel-ion). In addition to the NgHNg+ cations, the isoelectronic YHY- (Y = halogen atom or pseudohalogen fragment) anions have been studied with the matrix-isolation technique. These species have been known to exist in alkali metal salts (YHY)-M+ (M = alkali metal e.g. K or Na) for more than 80 years. Hydrated HF forms the FHF- structure in aqueous solutions, and these ions participate in several important chemical processes. In this thesis, studies of the intermolecular interactions of HNgY molecules and centrosymmetric ions with various species are presented. The HNgY complexes show unusual spectral features, e.g. large blue-shifts of the H-Ng stretching vibration upon complexation. It is suggested that the blue-shift is a normal effect for these molecules, and that originates from the enhanced (HNg)+Y- ion-pair character upon complexation. It is also found that the HNgY molecules are energetically stabilized in the complexed form, and this effect is computationally demonstrated for the HHeF molecule. The NgHNg+ and YHY- ions also show blue-shifts in their asymmetric stretching vibration upon complexation with nitrogen. Additionally, the matrix site structure and hindered rotation (libration) of the HNgY molecules were studied. The librational motion is a much-discussed solid state phenomenon, and the HNgY molecules embedded in noble-gas matrices are good model systems to study this effect. The formation mechanisms of the HNgY molecules and the decay mechanism of NgHNg+ cations are discussed. A new electron tunneling model for the decay of NgHNg+ absorptions in noble-gas matrices is proposed. Studies of the NgHNg+∙∙∙N2 complexes support this electron tunneling mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study is to describe the development of application of mass spectrometry for the structural analyses of non-coding ribonucleic acids during past decade. Mass spectrometric methods are compared of traditional gel electrophoretic methods, the characteristics of performance of mass spectrometric, analyses are studied and the future trends of mass spectrometry of ribonucleic acids are discussed. Non-coding ribonucleic acids are short polymeric biomolecules which are not translated to proteins, but which may affect the gene expression in all organisms. Regulatory ribonucleic acids act through transient interactions with key molecules in signal transduction pathways. Interactions are mediated through specific secondary and tertiary structures. Posttranscriptional modifications in the structures of molecules may introduce new properties to the organism, such as adaptation to environmental changes or development of resistance to antibiotics. In the scope of this study, the structural studies include i) determination of the sequence of nucleobases in the polymer chain, ii) characterisation and localisation of posttranscriptional modifications in nucleobases and in the backbone structure, iii) identification of ribonucleic acid-binding molecules and iv) probing of higher order structures in the ribonucleic acid molecule. Bacteria, archaea, viruses and HeLa cancer cells have been used as target organisms. Synthesised ribonucleic acids consisting of structural regions of interest have been frequently used. Electrospray ionisation (ESI) and matrix-assisted laser desorption ionisation (MALDI) have been used for ionisation of ribonucleic analytes. Ammonium acetate and 2-propanol are common solvents for ESI. Trihydroxyacetophenone is the optimal MALDI matrix for ionisation of ribonucleic acids and peptides. Ammonium salts are used in ESI buffers and MALDI matrices as additives to remove cation adducts. Reverse phase high performance liquid chromatography has been used for desalting and fractionation of analytes either off-line of on-line, coupled with ESI source. Triethylamine and triethylammonium bicarbonate are used as ion pair reagents almost exclusively. Fourier transform ion cyclotron resonance analyser using ESI coupled with liquid chromatography is the platform of choice for all forms of structural analyses. Time-of-flight (TOF) analyser using MALDI may offer sensitive, easy-to-use and economical solution for simple sequencing of longer oligonucleotides and analyses of analyte mixtures without prior fractionation. Special analysis software is used for computer-aided interpretation of mass spectra. With mass spectrometry, sequences of 20-30 nucleotides of length may be determined unambiguously. Sequencing may be applied to quality control of short synthetic oligomers for analytical purposes. Sequencing in conjunction with other structural studies enables accurate localisation and characterisation of posttranscriptional modifications and identification of nucleobases and amino acids at the sites of interaction. High throughput screening methods for RNA-binding ligands have been developed. Probing of the higher order structures has provided supportive data for computer-generated three dimensional models of viral pseudoknots. In conclusion. mass spectrometric methods are well suited for structural analyses of small species of ribonucleic acids, such as short non-coding ribonucleic acids in the molecular size region of 20-30 nucleotides. Structural information not attainable with other methods of analyses, such as nuclear magnetic resonance and X-ray crystallography, may be obtained with the use of mass spectrometry. Sequencing may be applied to quality control of short synthetic oligomers for analytical purposes. Ligand screening may be used in the search of possible new therapeutic agents. Demanding assay design and challenging interpretation of data requires multidisclipinary knowledge. The implement of mass spectrometry to structural studies of ribonucleic acids is probably most efficiently conducted in specialist groups consisting of researchers from various fields of science.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rotational isomerism of S-methyl N-methyl dithiocarbamate (MMDTC) has been investigated by means of variable temperature proton NMR and i.r. spectroscopy. The i.r. spectra of MMDTC as neat, solution and at sub-ambient temperatures have been examined. Normal vibrational analysis of all the fundamentals of MMDTC has been carried out, the vibrational assignment has been compared with those of related secondary thioamides to note the consistency in the assignments and to obtain the pattern characteristic of the secondary thioamide vibrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fabrication of hydrogen bonded polymer self-assembly for drug delivery has been accomplished via layer-by-layer sequential assembly from aqueous solution. In this study, the self-assembly was constructed based on hydrogen bonding between DNA base (adenine and thymine) pairs substituted on the backbone of chitosan and hyaluronic acid. Chitosan was modified with adenine, whereas hyaluronic acid was modified with thymine. Subsequently, these two polymers were sequentially absorbed on flat substrate by taking advantage of interactions of DNA base pairs via hydrogen bonding. Interlayer hydrogen bonding of these two polymers produces stable multilayer film without using any cross-linking agent. Thin film formation on quartz substrate has been monitored with UV-vis spectra and an AFM study. Formation of multilayer hydrogen-bonded thin film has been further confirmed with SEM. Encapsulation and release behavior of the therapeutic drug from the multilayer thin film at different conditions has been illustrated using UV-vis spectra. Cell viability of modified polymers using MTT assay confirmed no cytotoxic effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract is not available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary We have determined the full-length 14,491-nucleotide genome sequence of a new plant rhabdovirus, alfalfa dwarf virus (ADV). Seven open reading frames (ORFs) were identified in the antigenomic orientation of the negative-sense, single-stranded viral RNA, in the order 3′-N-P-P3-M-G-P6-L-5′. The ORFs are separated by conserved intergenic regions and the genome coding region is flanked by complementary 3′ leader and 5′ trailer sequences. Phylogenetic analysis of the nucleoprotein amino acid sequence indicated that this alfalfa-infecting rhabdovirus is related to viruses in the genus Cytorhabdovirus. When transiently expressed as GFP fusions in Nicotiana benthamiana leaves, most ADV proteins accumulated in the cell periphery, but unexpectedly P protein was localized exclusively in the nucleus. ADV P protein was shown to have a homotypic, and heterotypic nuclear interactions with N, P3 and M proteins by bimolecular fluorescence complementation. ADV appears unique in that it combines properties of both cytoplasmic and nuclear plant rhabdoviruses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with the degree to which the graduate skills required by industry are developed in Australian universities. Despite acknowledgement of the need to increase the graduate skills of students, it would seem that the stated intentions of Australian universities in this respect do not yet meet the expectations of industry. The development of an enterprise program at the University of Tasmania provides by way of example, support that the development of industry-desired skills is possible alongside the desirable knowledge outcomes of a university. It is argued that lecturers and students must give and accept more responsibility for learning to enable the development of desirable graduate skills.