Unusual effects of anisotropic bonding in Cu(II) and Ni(II) oxides with K2NiF4 structure


Autoria(s): Singh, KK; Ganguly, P; Goodenough, JB
Data(s)

01/05/1984

Resumo

Geometric constraints present in A2BO4 compounds with the tetragonal-T structure of K2NiF4 impose a strong pressure on the B---OII---B bonds and a stretching of the A---OI---A bonds in the basal planes if the tolerance factor is t congruent with RAO/√2 RBO < 1, where RAO and RBO are the sums of the A---O and B---O ionic radii. The tetragonal-T phase of La2NiO4 becomes monoclinic for Pr2NiO4, orthorhombic for La2CuO4, and tetragonal-T′ for Pr2CuO4. The atomic displacements in these distorted phases are discussed and rationalized in terms of the chemistry of the various compounds. The strong pressure on the B---OII---B bonds produces itinerant σ*x2−y2 bands and a relative stabilization of localized dz2 orbitals. Magnetic susceptibility and transport data reveal an intersection of the Fermi energy with the d2z2 levels for half the copper ions in La2CuO4; this intersection is responsible for an intrinsic localized moment associated with a configuration fluctuation; below 200 K the localized moment smoothly vanishes with decreasing temperature as the d2z2 level becomes filled. In La2NiO4, the localized moments for half-filled dz2 orbitals induce strong correlations among the σ*x2−y2 electrons above Td reverse similar, equals 200 K; at lower temperatures the σ*x2−y2 electrons appear to contribute nothing to the magnetic susceptibility, which obeys a Curie-Weiss law giving a μeff corresponding to S = 1/2, but shows no magnetic order to lowest temperatures. These surprising results are verified by comparison with the mixed systems La2Ni1−xCuxO4 and La2−2xSr2xNi1−xTixO4. The onset of a charge-density wave below 200 K is proposed for both La2CuO4 and La2NiO4, but the atomic displacements would be short-range cooperative in mixed systems. The semiconductor-metallic transitions observed in several systems are found in many cases to obey the relation Ea reverse similar, equals kTmin, where varrho = varrho0exp(−Ea/kT) and Tmin is the temperature of minimum resistivity varrho. This relation is interpreted in terms of a diffusive charge-carrier mobility with Ea reverse similar, equals ΔHm reverse similar, equals kT at T = Tmin.

Formato

application/pdf

Identificador

http://eprints.iisc.ernet.in/23422/1/4.pdf

Singh, KK and Ganguly, P and Goodenough, JB (1984) Unusual effects of anisotropic bonding in Cu(II) and Ni(II) oxides with K2NiF4 structure. In: Journal of Solid State Chemistry, 53 (3). pp. 254-273.

Publicador

Elsevier Scince

Relação

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WM2-4B6NSH8-1D&_user=512776&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000025298&_version=1&_urlVersion=0&_userid=512776&md5=cec21614020643dde0cd2c3f883f915b

http://eprints.iisc.ernet.in/23422/

Palavras-Chave #Solid State & Structural Chemistry Unit
Tipo

Journal Article

PeerReviewed