929 resultados para Satellite images
Resumo:
When recapturing satellite collared wild dogs that had been trapped one month previous in padded foothold traps, we noticed varying degrees of pitting on the pads of their trapped paw. Veterinary advice, based on images taken of the injuries, suggests that the necrosis was caused by vascular compromise. Five of six dingoes we recaptured had varying degrees of necrosis restricted only to the trapped foot and ranging from single 5 mm holes to 25% sections of the toe pads missing or deformed, including loss of nails. The traps used were rubber-padded, two–coiled, Victor Soft Catch #3 traps. The springs are not standard Victor springs but were Beefer springs; these modifications slightly increase trap speed and the jaw pressure on the trapped foot. Despite this modification the spring pressure is still relatively mild in comparison to conventional long spring or four-coiled wild dog traps. The five wild dogs developing necrosis were trapped in November 2006 at 5-6 months of age. Traps were checked each morning so the dogs were unlikely to have been restrained in the trap for more than 12 hours. All dogs exhibited a small degree of paw damage at capture which presented itself as a swollen paw and compression at the capture point. In contrast, eight wild dogs, 7-8 month-old, were captured two months later in February. Upon their release, on advice from a veterinarian, we massaged the trapped foot to get blood flow back in to the foot and applied a bruise treatment (Heparinoid 8.33 mg/ml) to assist restoring blood flow. These animals were subsequently recaptured several months later and showed no signs of necrosis. While post-capture foot injuries are unlikely to be an issue in conventional control programs where the animal is immediately destroyed, caution needs to be used when releasing accidentally captured domestic dogs or research animals captured in rubber-padded traps. We have demonstrated that 7-8 month old dogs can be trapped and released without any evidence of subsequent necrosis following minimal veterinary treatment. We suspect that the rubber padding on traps may increase the tourniquet effect by wrapping around the paw and recommend the evaluation of offset laminated steel jaw traps as an alternative. Offset laminated steel jaw traps have been shown to be relatively humane producing as few foot injuries as rubber-jawed traps.
Resumo:
This paper compares classified normalized difference vegetation index images of cotton crops derived from both low and high resolution satellite imagery to determine the most accurate and feasible option for Australian cotton growers. It also demonstrates a rapid automated processing and internet delivery system for distributing satellite SPOT-2 imagery. Also provided is the profile of two case studies conducted in the Darling Towns demonstrating the potential benefit of adopting this technology for improving in-season agronomic crop assessments and therefore enable improved management decisions to be made.
Resumo:
Images from cell biology experiments often indicate the presence of cell clustering, which can provide insight into the mechanisms driving the collective cell behaviour. Pair-correlation functions provide quantitative information about the presence, or absence, of clustering in a spatial distribution of cells. This is because the pair-correlation function describes the ratio of the abundance of pairs of cells, separated by a particular distance, relative to a randomly distributed reference population. Pair-correlation functions are often presented as a kernel density estimate where the frequency of pairs of objects are grouped using a particular bandwidth (or bin width), Δ>0. The choice of bandwidth has a dramatic impact: choosing Δ too large produces a pair-correlation function that contains insufficient information, whereas choosing Δ too small produces a pair-correlation signal dominated by fluctuations. Presently, there is little guidance available regarding how to make an objective choice of Δ. We present a new technique to choose Δ by analysing the power spectrum of the discrete Fourier transform of the pair-correlation function. Using synthetic simulation data, we confirm that our approach allows us to objectively choose Δ such that the appropriately binned pair-correlation function captures known features in uniform and clustered synthetic images. We also apply our technique to images from two different cell biology assays. The first assay corresponds to an approximately uniform distribution of cells, while the second assay involves a time series of images of a cell population which forms aggregates over time. The appropriately binned pair-correlation function allows us to make quantitative inferences about the average aggregate size, as well as quantifying how the average aggregate size changes with time.
Resumo:
The selection of different patch types for grazing by cattle in tropical savannas is well documented. Advances in high resolution satellite imagery and computing power now allow us to identify patch types over an entire paddock, combined with GPS collars as a non instrusive method of capturing positional data, an accurate and comprehensive picture of landscape use by cattle can be quantified.
Resumo:
Patch selection by grazing animals is difficult to quantify, particularly in large, extensive paddocks like those in northern Australia. However, advances in high resolution satellite imagery now allow identification of patch types over an entire paddock which combined with GPS collars to capture positional data, can give an accurate and comprehensive picture of landscape use by cattle.
Resumo:
A closed-loop steering logic based on an optimal (2-guidance is developed here. The guidance system drives the satellite launch vehicle along a two- or three- dimensional trajectory for placing the payload into a specified circular orbit. The modified g-guidance algorithm makes use of the optimal required velocity vector, which minimizes the total impulse needed for an equivalent two-impluse transfer from the present state to the final orbit. The required velocity vector is defined as velocity of the vehicle on the hypothetical transfer orbit immediately after the application of the first impulse. For this optimal transfer orbit, a simple and elegant expression for the Q-matrix is derived. A working principle for the guidance algorithm in terms of the major and minor cycles, and also for the generation of the steering command, is outlined.
Resumo:
Background: Understanding the long-distance movement of bats has direct relevance to studies of population dynamics, ecology, disease emergence, and conservation. Methodology/Principal Findings: We developed and trialed several collar and platform terminal transmitter (PTT) combinations on both free-living and captive fruit bats (Family Pteropodidae: Genus Pteropus). We examined transmitter weight, size, profile and comfort as key determinants of maximized transmitter activity. We then tested the importance of bat-related variables (species size/weight, roosting habitat and behavior) and environmental variables (day-length, rainfall pattern) in determining optimal collar/PTT configuration. We compared battery- and solar-powered PTT performance in various field situations, and found the latter more successful in maintaining voltage on species that roosted higher in the tree canopy, and at lower density, than those that roost more densely and lower in trees. Finally, we trialed transmitter accuracy, and found that actual distance errors and Argos location class error estimates were in broad agreement. Conclusions/Significance: We conclude that no single collar or transmitter design is optimal for all bat species, and that species size/weight, species ecology and study objectives are key design considerations. Our study provides a strategy for collar and platform choice that will be applicable to a larger number of bat species as transmitter size and weight continue to decrease in the future.
Resumo:
The behaviour of the slotted ALOHA satellite channel with a finite buffer at each of the user terminals is studied. Approximate relationships between the queuing delay, overflow probabilities and buffer size are derived as functions of the system input parameters (i.e. the number of users, the traffic intensity, the transmission and the retransmission probabilities) for two cases found in the literature: the symmetric case (same transmission and retransmission probabilities), and the asymmetric case (transmission probability far greater than the retransmission probability). For comparison, the channel performance with an infinite buffer is also derived. Additionally, the stability condition for the system is defined in the latter case. The analysis carried out in the paper reveals that the queuing delays are quite significant, especially under high traffic conditions.
Resumo:
This thesis examines the feasibility of a forest inventory method based on two-phase sampling in estimating forest attributes at the stand or substand levels for forest management purposes. The method is based on multi-source forest inventory combining auxiliary data consisting of remote sensing imagery or other geographic information and field measurements. Auxiliary data are utilized as first-phase data for covering all inventory units. Various methods were examined for improving the accuracy of the forest estimates. Pre-processing of auxiliary data in the form of correcting the spectral properties of aerial imagery was examined (I), as was the selection of aerial image features for estimating forest attributes (II). Various spatial units were compared for extracting image features in a remote sensing aided forest inventory utilizing very high resolution imagery (III). A number of data sources were combined and different weighting procedures were tested in estimating forest attributes (IV, V). Correction of the spectral properties of aerial images proved to be a straightforward and advantageous method for improving the correlation between the image features and the measured forest attributes. Testing different image features that can be extracted from aerial photographs (and other very high resolution images) showed that the images contain a wealth of relevant information that can be extracted only by utilizing the spatial organization of the image pixel values. Furthermore, careful selection of image features for the inventory task generally gives better results than inputting all extractable features to the estimation procedure. When the spatial units for extracting very high resolution image features were examined, an approach based on image segmentation generally showed advantages compared with a traditional sample plot-based approach. Combining several data sources resulted in more accurate estimates than any of the individual data sources alone. The best combined estimate can be derived by weighting the estimates produced by the individual data sources by the inverse values of their mean square errors. Despite the fact that the plot-level estimation accuracy in two-phase sampling inventory can be improved in many ways, the accuracy of forest estimates based mainly on single-view satellite and aerial imagery is a relatively poor basis for making stand-level management decisions.
Resumo:
Now that crystals are being considered suitable for high density optical information storage, it is important to reduce the noise levels of retrieved images. The paper describes a simple technique to bring this about.
Resumo:
This thesis contributes a substantial new theoretical understanding of what 'landscape meanings' are, and what constitutes the specific meanings of particular landscapes to individuals. Further, it proposes how landscape architects may identify these meanings to inform critical and ethical research, theory, professional practice and education. What emerges from this representative case study of the landscape of Richard Haag's Gas Works Park in Seattle is the understanding that a person's expressions of their 'cognitive landscape images' of a particular landscape, coupled with their expressions of their 'interactions' with that landscape, constitute the specific 'meaning-narrative' they attach to it.
Resumo:
The article describes a new method for obtaining a holographic image of desired magnification, consistent with the stipulated criteria for its resolution and aberrations.
Resumo:
Remote sensing provides methods to infer land cover information over large geographical areas at a variety of spatial and temporal resolutions. Land cover is input data for a range of environmental models and information on land cover dynamics is required for monitoring the implications of global change. Such data are also essential in support of environmental management and policymaking. Boreal forests are a key component of the global climate and a major sink of carbon. The northern latitudes are expected to experience a disproportionate and rapid warming, which can have a major impact on vegetation at forest limits. This thesis examines the use of optical remote sensing for estimating aboveground biomass, leaf area index (LAI), tree cover and tree height in the boreal forests and tundra taiga transition zone in Finland. The continuous fields of forest attributes are required, for example, to improve the mapping of forest extent. The thesis focus on studying the feasibility of satellite data at multiple spatial resolutions, assessing the potential of multispectral, -angular and -temporal information, and provides regional evaluation for global land cover data. Preprocessed ASTER, MISR and MODIS products are the principal satellite data. The reference data consist of field measurements, forest inventory data and fine resolution land cover maps. Fine resolution studies demonstrate how statistical relationships between biomass and satellite data are relatively strong in single species and low biomass mountain birch forests in comparison to higher biomass coniferous stands. The combination of forest stand data and fine resolution ASTER images provides a method for biomass estimation using medium resolution MODIS data. The multiangular data improve the accuracy of land cover mapping in the sparsely forested tundra taiga transition zone, particularly in mires. Similarly, multitemporal data improve the accuracy of coarse resolution tree cover estimates in comparison to single date data. Furthermore, the peak of the growing season is not necessarily the optimal time for land cover mapping in the northern boreal regions. The evaluated coarse resolution land cover data sets have considerable shortcomings in northernmost Finland and should be used with caution in similar regions. The quantitative reference data and upscaling methods for integrating multiresolution data are required for calibration of statistical models and evaluation of land cover data sets. The preprocessed image products have potential for wider use as they can considerably reduce the time and effort used for data processing.
Resumo:
The Taita Hills in southeastern Kenya form the northernmost part of Africa’s Eastern Arc Mountains, which have been identified by Conservation International as one of the top ten biodiversity hotspots on Earth. As with many areas of the developing world, over recent decades the Taita Hills have experienced significant population growth leading to associated major changes in land use and land cover (LULC), as well as escalating land degradation, particularly soil erosion. Multi-temporal medium resolution multispectral optical satellite data, such as imagery from the SPOT HRV, HRVIR, and HRG sensors, provides a valuable source of information for environmental monitoring and modelling at a landscape level at local and regional scales. However, utilization of multi-temporal SPOT data in quantitative remote sensing studies requires the removal of atmospheric effects and the derivation of surface reflectance factor. Furthermore, for areas of rugged terrain, such as the Taita Hills, topographic correction is necessary to derive comparable reflectance throughout a SPOT scene. Reliable monitoring of LULC change over time and modelling of land degradation and human population distribution and abundance are of crucial importance to sustainable development, natural resource management, biodiversity conservation, and understanding and mitigating climate change and its impacts. The main purpose of this thesis was to develop and validate enhanced processing of SPOT satellite imagery for use in environmental monitoring and modelling at a landscape level, in regions of the developing world with limited ancillary data availability. The Taita Hills formed the application study site, whilst the Helsinki metropolitan region was used as a control site for validation and assessment of the applied atmospheric correction techniques, where multiangular reflectance field measurements were taken and where horizontal visibility meteorological data concurrent with image acquisition were available. The proposed historical empirical line method (HELM) for absolute atmospheric correction was found to be the only applied technique that could derive surface reflectance factor within an RMSE of < 0.02 ps in the SPOT visible and near-infrared bands; an accuracy level identified as a benchmark for successful atmospheric correction. A multi-scale segmentation/object relationship modelling (MSS/ORM) approach was applied to map LULC in the Taita Hills from the multi-temporal SPOT imagery. This object-based procedure was shown to derive significant improvements over a uni-scale maximum-likelihood technique. The derived LULC data was used in combination with low cost GIS geospatial layers describing elevation, rainfall and soil type, to model degradation in the Taita Hills in the form of potential soil loss, utilizing the simple universal soil loss equation (USLE). Furthermore, human population distribution and abundance were modelled with satisfactory results using only SPOT and GIS derived data and non-Gaussian predictive modelling techniques. The SPOT derived LULC data was found to be unnecessary as a predictor because the first and second order image texture measurements had greater power to explain variation in dwelling unit occurrence and abundance. The ability of the procedures to be implemented locally in the developing world using low-cost or freely available data and software was considered. The techniques discussed in this thesis are considered equally applicable to other medium- and high-resolution optical satellite imagery, as well the utilized SPOT data.
Resumo:
The behaviour of the slotted ALOHA satellite channel with a finite buffer at each of the user terminals is studied. Approximate relationships between the queuing delay, overflow probabilities and buffer size are derived as functions of the system input parameters (i.e. the number of users, the traffic intensity, the transmission and the retransmission probabilities) for two cases found in the literature: the symmetric case (same transmission and retransmission probabilities), and the asymmetric case (transmission probability far greater than the retransmission probability). For comparison, the channel performance with an infinite buffer is also derived. Additionally, the stability condition for the system is defined in the latter case. The analysis carried out in the paper reveals that the queuing delays are quite significant, especially under high traffic conditions.