876 resultados para Sandhall, Åke: Ötökät
Resumo:
Neurons in the developing brain die via apoptosis after DNA damage, while neurons in the adult brain are generally resistant to these insults. The basis for this resistance is a matter of conjecture. We report here that cerebellar granule neurons (CGNs) in culture lose their competence to die in response to DNA damage as a function of time in culture. CGNs at either 1 day in vitro (DIV) or 7 DIV were treated with the DNA damaging agents camptothecin, UV or gamma-irradiation and neuronal survival measured. The younger neurons were effectively killed by these agents, while the older neurons displayed a significant resistance to killing. Neuronal survival did not change with time in culture when cells were treated with C2-ceramide or staurosporine, agents which do not target DNA. The resistance to UV irradiation developed over time in culture and was not due to changes in mitotic rate. Increases in DNA strand breakage, up-regulation of the levels of both p53 and its phosphorylated form and nuclear translocation of p53 were equivalent in both older and younger neurons, indicating a comparable p53 stress response. In addition, we show that treatment of older neurons with pharmacological inhibitors of distinct components of the DNA repair machinery promotes the accumulation of DNA damage and sensitizes these cells to the toxic effects of UV exposure. These data demonstrate that older neurons appear to be more proficient in DNA repair in comparison to their younger counterparts, and that this leads to increased survival after DNA damage.
Substances hazardous to health:the nature of the expertise associated with competent risk assessment
Resumo:
This research investigated expertise in hazardous substance risk assessment (HSRA). Competent pro-active risk assessment is needed to prevent occupational ill-health caused by hazardous substance exposure occurring in the future. In recent years there has been a strong demand for HSRA expertise and a shortage of expert practitioners. The discipline of Occupational Hygiene was identified as the key repository of knowledge and skills for HSRA and one objective of this research was to develop a method to elicit this expertise from experienced occupational hygienists. In the study of generic expertise, many methods of knowledge elicitation (KE) have been investigated, since this has been relevant to the development of 'expert systems' (thinking computers). Here, knowledge needed to be elicited from human experts, and this stage was often a bottleneck in system development, since experts could not explain the basis of their expertise. At an intermediate stage, information collected was used to structure a basic model of hazardous substance risk assessment activity (HSRA Model B) and this formed the basis of tape transcript analysis in the main study with derivation of a 'classification' and a 'performance matrix'. The study aimed to elicit the expertise of occupational hygienists and compare their performance with other health and safety professionals (occupational health physicians, occupational health nurses, health and safety practitioners and trainee health and safety inspectors), as evaluated using the matrix. As a group, the hygienists performed best in the exercise, and this group were particularly good at process elicitation and at recommending specific control measures, although the other groups also performed well in selected aspects of the matrix and the work provided useful findings and insights. From the research, two models of HSRA have been derived, an HSRA aid, together with a novel videotape KE technique and interesting research findings. The implications of this are discussed with respect to future training of HS professionals and wider application of the videotape KE method.
Resumo:
Tetraspanins are thought to exert their biological function(s) by co-ordinating the lateral movement and trafficking of associated molecules into tetraspanin-enriched microdomains. A second four-TM (transmembrane) domain protein family, the Claudin superfamily, is the major structural component of cellular TJs (tight junctions). Although the Claudin family displays low sequence homology and appears to be evolutionarily distinct from the tetraspanins, CD81 and Claudin-1 are critical molecules defining HCV (hepatitis C virus) entry; we recently demonstrated that CD81-Claudin-1 complexes have an essential role in this process. To understand the molecular basis of CD81-Claudin-1 complex formation, we produced and purified milligram quantities of full-length CD81 and Claudin-1, alone and in complex, in both detergent and lipid contexts. Structural characterization of these purified proteins will allow us to define the mechanism(s) underlying virus-cell interactions and aid the design of therapeutic agents targeting early steps in the viral life cycle.
Resumo:
STUDY DESIGN: The twy/twy mouse undergoes spontaneous chronic mechanical compression of the spinal cord; this in vivo model system was used to examine the effects of retrograde adenovirus (adenoviral vector [AdV])-mediated brain-derived neurotrophic factor (BDNF) gene delivery to spinal neural cells. OBJECTIVE: To investigate the targeting and potential neuroprotective effect of retrograde AdV-mediated BDNF gene transfection in the chronically compressed spinal cord in terms of prevention of apoptosis of neurons and oligodendrocytes. SUMMARY OF BACKGROUND DATA: Several studies have investigated the neuroprotective effects of neurotrophins, including BDNF, in spinal cord injury. However, no report has described the effects of retrograde neurotrophic factor gene delivery in compressed spinal cords, including gene targeting and the potential to prevent neural cell apoptosis. METHODS: AdV-BDNF or AdV-LacZ (as a control gene) was injected into the bilateral sternomastoid muscles of 18-week old twy/twy mice for retrograde gene delivery via the spinal accessory motor neurons. Heterozygous Institute of Cancer Research mice (+/twy), which do not undergo spontaneous spinal compression, were used as a control for the effects of such compression on gene delivery. The localization and cell specificity of ß-galactosidase expression (produced by LacZ gene transfection) and BDNF expression in the spinal cord were examined by coimmunofluorescence staining for neural cell markers (NeuN, neurons; reactive immunology protein, oligodendrocytes; glial fibrillary acidic protein, astrocytes; OX-42, microglia) 4 weeks after gene injection. The possible neuroprotection afforded by retrograde AdV-BDNF gene delivery versus AdV-LacZ-transfected control mice was assessed by scoring the prevalence of apoptotic cells (terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling-positive cells) and immunoreactivity to active caspases -3, -8, and -9, p75, neurofilament 200 kD (NF), and for the oligodendroglial progenitor marker, NG2. RESULTS.: Four weeks after injection, the retrograde delivery of the LacZ marker gene was identified in cervical spinal neurons and some glial cells, including oligodendrocytes in the white matter of the spinal cord, in both the twy/twy mouse and the heterozygous Institute of Cancer Research mouse (+/twy). In the compressed spinal cord of twy/twy mouse, AdV-BDNF gene transfection resulted in a significant decrease in the number of terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling-positive cells present in the spinal cord and a downregulation in the caspase apoptotic pathway compared with AdV-LacZ (control) gene transfection. There was a marked and significant increase in the areas of the spinal cord of AdV-BDNF-injected mice that were NF- and NG2-immunopositive compared with AdV-LacZ-injected mice, indicating the increased presence of neurons and oligodendrocytes in response to BDNF transfection. CONCLUSION: Our results demonstrate that targeted retrograde BDNF gene delivery suppresses apoptosis in neurons and oligodendrocytes in the chronically compressed spinal cord of twy/twy mouse. Further work is required to establish whether this method of gene delivery may provide neuroprotective effects in other situations of compressive spinal cord injury.
Resumo:
VEGF-A activity is tightly regulated by ligand and receptor availability. Here we investigate the physiological function of heterodimers between VEGF receptor-1 (VEGFR-1; Flt-1) and VEGFR-2 (KDR; Flk-1) (VEGFR(1-2)) in endothelial cells with a synthetic ligand that binds specifically to VEGFR(1-2). The dimeric ligand comprises one VEGFR-2-specific monomer (VEGF-E) and a VEGFR-1-specific monomer (PlGF-1). Here we show that VEGFR(1-2) activation mediates VEGFR phosphorylation, endothelial cell migration, sustained in vitro tube formation and vasorelaxation via the nitric oxide pathway. VEGFR(1-2) activation does not mediate proliferation or elicit endothelial tissue factor production, confirming that these functions are controlled by VEGFR-2 homodimers. We further demonstrate that activation of VEGFR(1-2) inhibits VEGF-A-induced prostacyclin release, phosphorylation of ERK1/2 MAP kinase and mobilization of intracellular calcium from primary endothelial cells. These findings indicate that VEGFR-1 subunits modulate VEGF activity predominantly by forming heterodimer receptors with VEGFR-2 subunits and such heterodimers regulate endothelial cell homeostasis.
Resumo:
The development and characterization of an enhanced composite skin substitute based on collagen and poly(e-caprolactone) are reported. Considering the features of excellent biocompatibility, easy-manipulated property and exempt from cross-linking related toxicity observed in the 1:20 biocomposites, skin substitutes were developed by seeding human single-donor keratinocytes and fibroblasts alone on both sides of the 1:20 biocomposite to allow for separation of two cell types and preserving cell signals transmission via micro-pores with a porosity of 28.8 ± 16.1 µm. The bi-layered skin substitute exhibited both differentiated epidermis and fibrous dermis in vitro. Less Keratinocyte Growth Factor production was measured in the co-cultured skin model compared to fibroblast alone condition indicating a favorable microenvironment for epidermal homeostasis. Moreover, fast wound closure, epidermal differentiation, and abundant dermal collagen deposition were observed in composite skin in vivo. In summary, the beneficial characteristics of the new skin substitutes exploited the potential for pharmaceutical screening and clinical application.
Resumo:
The transmembrane domain proteins of the claudin superfamily are the major structural components of cellular tight junctions. One family member, claudin-1, also associates with tetraspanin CD81 as part of a receptor complex that is essential for hepatitis C virus (HCV) infection of the liver. To understand the molecular basis of claudin-1/CD81 association we previously produced and purified milligram quantities of functional, full-length CD81, which binds a soluble form of HCV E2 glycoprotein (sE2). Here we report the production, purification and characterization of claudin-1. Both yeast membrane-bound and detergent-extracted, purified claudin-1 were antigenic and recognized by specific antibodies. Analytical ultracentrifugation demonstrated that extraction with n-octyl-ß-d-glucopyranoside yielded monodispersed, dimeric pools of claudin-1 while extraction with profoldin-8 or n-decylphosphocholine yielded a dynamic mixture of claudin-1 oligomers. Neither form bound sE2 in line with literature expectations, while further functional analysis was hampered by the finding that incorporation of claudin-1 into proteoliposomes rendered them intractable to study. Dynamic light scattering demonstrated that claudin-1 oligomers associate with CD81 in vitro in a defined molar ratio of 1:2 and that complex formation was enhanced by the presence of cholesteryl hemisuccinate. Attempts to assay the complex biologically were limited by our finding that claudin-1 affects the properties of proteoliposomes. We conclude that recombinant, correctly-folded, full-length claudin-1 can be produced in yeast membranes, that it can be extracted in different oligomeric forms that do not bind sE2 and that a dynamic preparation can form a specific complex with CD81 in vitro in the absence of any other cellular components. These findings pave the way for the structural characterization of claudin-1 alone and in complex with CD81.
Resumo:
Background & Aims - Hepatitis C virus (HCV) infection leads to progressive liver disease, frequently culminating in fibrosis and hepatocellular carcinoma. The mechanisms underlying liver injury in chronic hepatitis C are poorly understood. This study evaluated the role of vascular endothelial growth factor (VEGF) in hepatocyte polarity and HCV infection. Methods - We used polarized hepatoma cell lines and the recently described infectious HCV Japanese fulminant hepatitis (JFH)-1 cell culture system to study the role of VEGF in regulating hepatoma permeability and HCV infection. Results - VEGF negatively regulates hepatocellular tight junction integrity and cell polarity by a novel VEGF receptor 2–dependent pathway. VEGF reduced hepatoma tight junction integrity, induced a re-organization of occludin, and promoted HCV entry. Conversely, inhibition of hepatoma expressed VEGF with the receptor kinase inhibitor sorafenib or with neutralizing anti-VEGF antibodies promoted polarization and inhibited HCV entry, showing an autocrine pathway. HCV infection of primary hepatocytes or hepatoma cell lines promoted VEGF expression and reduced their polarity. Importantly, treatment of HCV-infected cells with VEGF inhibitors restored their ability to polarize, showing a VEGF-dependent pathway. Conclusions - Hepatic polarity is critical to normal liver physiology. HCV infection promotes VEGF expression that depolarizes hepatoma cells, promoting viral transmission and lymphocyte migration into the parenchyma that may promote hepatocyte injury.
Resumo:
Dynamic Optimization Problems (DOPs) have been widely studied using Evolutionary Algorithms (EAs). Yet, a clear and rigorous definition of DOPs is lacking in the Evolutionary Dynamic Optimization (EDO) community. In this paper, we propose a unified definition of DOPs based on the idea of multiple-decision-making discussed in the Reinforcement Learning (RL) community. We draw a connection between EDO and RL by arguing that both of them are studying DOPs according to our definition of DOPs. We point out that existing EDO or RL research has been mainly focused on some types of DOPs. A conceptualized benchmark problem, which is aimed at the systematic study of various DOPs, is then developed. Some interesting experimental studies on the benchmark reveal that EDO and RL methods are specialized in certain types of DOPs and more importantly new algorithms for DOPs can be developed by combining the strength of both EDO and RL methods.
Resumo:
The ongoing rapid expansion of the Internet greatly increases the necessity of effective recommender systems for filtering the abundant information. Extensive research for recommender systems is conducted by a broad range of communities including social and computer scientists, physicists, and interdisciplinary researchers. Despite substantial theoretical and practical achievements, unification and comparison of different approaches are lacking, which impedes further advances. In this article, we review recent developments in recommender systems and discuss the major challenges. We compare and evaluate available algorithms and examine their roles in the future developments. In addition to algorithms, physical aspects are described to illustrate macroscopic behavior of recommender systems. Potential impacts and future directions are discussed. We emphasize that recommendation has great scientific depth and combines diverse research fields which makes it interesting for physicists as well as interdisciplinary researchers. © 2012 Elsevier B.V.
Resumo:
Individuals often imitate each other to fall into the typical group, leading to a self-organized state of typical behaviors in a community. In this paper, we model self-organization in social tagging systems and illustrate the underlying interaction and dynamics. Specifically, we introduce a model in which individuals adjust their own tagging tendency to imitate the average tagging tendency. We found that when users are of low confidence, they tend to imitate others and lead to a self-organized state with active tagging. On the other hand, when users are of high confidence and are stubborn to change, tagging becomes inactive. We observe a phase transition at a critical level of user confidence when the system changes from one regime to the other. The distributions of post length obtained from the model are compared to real data, which show good agreement. © 2011 American Physical Society.
Resumo:
Large-scale mechanical products, such as aircraft and rockets, consist of large numbers of small components, which introduce additional difficulty for assembly accuracy and error estimation. Planar surfaces as key product characteristics are usually utilised for positioning small components in the assembly process. This paper focuses on assembly accuracy analysis of small components with planar surfaces in large-scale volume products. To evaluate the accuracy of the assembly system, an error propagation model for measurement error and fixture error is proposed, based on the assumption that all errors are normally distributed. In this model, the general coordinate vector is adopted to represent the position of the components. The error transmission functions are simplified into a linear model, and the coordinates of the reference points are composed by theoretical value and random error. The installation of a Head-Up Display is taken as an example to analyse the assembly error of small components based on the propagation model. The result shows that the final coordination accuracy is mainly determined by measurement error of the planar surface in small components. To reduce the uncertainty of the plane measurement, an evaluation index of measurement strategy is presented. This index reflects the distribution of the sampling point set and can be calculated by an inertia moment matrix. Finally, a practical application is introduced for validating the evaluation index.
Resumo:
A többszektoros makroökonómiai modellek megkövetelik az átfogó, részletes és konzisztens adatok felhasználását, de a magyar statisztikai források nem teszik lehetővé ilyen könnyen kezelhető és egyértelmű adatbázis összeállítását. Az EU-csatlakozás, a költségvetési szerkezetváltozások és más gazdaságpolitikai döntések hatásának sürgető elemzésére a szerző egy ideiglenes adatbázist állított össze, felhasználva több más statisztikai forrás mellett a legfrissebb, 1998. évi ÁKM-et, a nemzeti számlákat és az 1998. évi háztartásstatisztika adatait. Ez a több szempontból is példa nélküli vállalkozás statisztikai szakemberek jelentős segítségét igényelte, ugyanakkor hasznos információkat nyújthat más országok statisztikusainak, modellezőinek és gazdasági elemzőinek egyaránt. A tanulmány bepillantást nyújt az összeállítási folyamat különböző módszertani és technikai problémáiba (különösen a csoportosítás, az értékelés és a konvertálás nehézségeibe) és bemutatja a különböző források összehangolására és a hiányzó adatok becslésére alkalmazott módszertant. Az adatbázis magja tartalmazza a dezaggregált Társadalmi Elszámolási Mátrix (Social Accounting Matrix – SAM) minden elemét 61 iparágra, illetve háztartási rétegek szerinti bontásban, az ugyancsak dezaggregált foglalkoztatási, beruházott tőke- és értékcsökkenési adatokat, valamint a különböző pénzügyi aktívákat és passzívákat iparági és intézményi szektorok szerint. A tanulmány bemutatja az adatbázis legfontosabb részeit, mint például a SAM és a különböző pénzügyi eszközök nyitó és záró állományait és folyam- (hozamok, átértékelések, tranzakciók) típusú adatait.