942 resultados para SOLID-LIQUID EQUILIBRIUM


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Barak Obama, orator extraordinaire, the embodiment of the American success myth, 'global' prophet of the adoring masses and multi-media auratic figure, is the leading illustration of what is the expanded nexus of celebrity, spectacle and politics in the age of what Zygmund Bauman refers to as liquid modernity or 'the era of disembedding without re-embedding' (2001, p. 89). This is the era in which a traumatic sense of fear, uncertainty and transience defines one's relationship to the nation state, and social (media) centre, as they lose their economic singularity and cultural coherency and cohesiveness in a world system ever inter-connected and driven increasingly, incessantly by supra-corporate concerns and spectacular celebrity-based presentations. In this world of 'togetherness dismantled' (Bauman 2003, p. 119), the disenfranchised individual feels they cannot meet the trans-capital intensive, show reel-like, boundaryless world on solid ground. That adoration, or a liquefied definition of it, is key to this imagined and affective communion between Obama and those who adore him, suggests that there is a terrible wanting and simultaneous waning to those who look for such rootedness and the promise of deliverance in the celebrity political figure. This is a charismatic authority figure who promises this solidity yet streams in and out of material view, unable to fix or properly propagate their communion beyond triumphant spectacularism. Their 'lightness of being' (ibid, p. 123-9) is powerfully seductive and decidedly empty because it echoes the instantaneous (instant) way in which all lives are increasingly led. I will suggest that liquid celebrity is one of the cornerstones of liquid modernity, and Barack Obama is the epitome of this 'runniness'.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ionic liquid (IL) N-methyl-N-butylmorpholinium bis(fluorosulfonyl)imide (C4mmor FSI) is examined from physical and electrochemical perspectives. Pulsed field gradient NMR spectroscopy shows that ion diffusivities are low compared with similar, non-ethereal ILs. Ionicity values indicate that above room temperature, less than 50% of ions contribute to conductivity.

Lithium cycling in symmetrical cells using a C4mmor FSI-based electrolyte is best demonstrated at elevated temperatures. Specific capacities of 130 mAh g−1 are achieved in a Li−LiFePO4 battery at 85 °C. FT-IR spectroscopic investigations of lithium electrodes suggest the presence of alkoxide species in the solid electrolyte interphase (SEI), implying a ring-opening reaction of C4mmor with lithium metal. In contrast, the SEI derived from N-methyl-N-propylpiperidinium FSI lacks the alkoxide signature but shows signs of alkyl unsaturation, and the activation energy for Li+ transport through this SEI is slightly lower than that for the C4mmor-derived SEI. Our detailed findings give insight into the capabilities and limitations of rechargeable lithium metal batteries utilizing a C4mmor FSI electrolyte.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Direct measurements of a long-range force between charged solid surfaces in a nonpolar liquid are presented for the first time. Measurements were made between mica surfaces in solutions of the anionic surfactant sodium di-2-ethylhexylsulfosuccinate (AOT) at millimolar concentrations in n-decane using a surface force apparatus which has been modified to improve its sensitivity for detecting a weak and long-range force. Modifications include a magnetic drive system, the use of a weak cantilever spring with the apparatus mounted in a vertical configuration, and a detailed consideration of the interference optics to allow accurate measurements of surface separations up to several micrometers. The results show a repulsion that is well fitted by theoretical curves based on a model in which only counterions enter the calculation, in other words, in the absence of a reservoir of ions in the solvent. Fitting the theory to the data allows an estimate of the mica surface charge density of ∼1 mC/m2. A mechanism for surface charging of mica in this solution is proposed, which includes a role for trace amounts of water that are inevitably present and adsorbed surface aggregates of AOT. The relevance of the results to previously observed charge stabilization of colloids in nonaqueous solvents is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The plausibility of the entropic repulsion of electrical double layers acting to stabilize an equilibrium thickness of intergranular glass films in polycrystalline ceramics is explored. Estimates of the screening length, surface potential, and surface charge required to provide a repulsive force sufficiently large to balance the attractive van der Waals and capillary forces for observable thicknesses of intergranular film are calculated and do not appear to be beyond possibility. However, it has yet to be established whether crystalline particles in a liquid-phase sintering medium possess an electrical double layer at high temperatures. If they do, such a surface charge layer may well have important consequences not only for liquid-phase sintering but also for high-frequency electrical properties and microwave sintering of ceramics containing a liquid phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measurements of the force as a function of distance between two solids separated by a liquid crystal film give information on the structure of the film. We report such measurements for two molecularly smooth surfaces of mica separated by the nematic liquid crystal 4'-n-pentyl 4-cyanobiphenyl (5CB) in both the planar and homeotropic orientations at room temperature. The force is determined by measuring the deflection of a spring supporting one of the mica pieces, while an optical technique is used to measure the film thickness to an accuracy of ± (0.1-0.2) nm. The technique also allows the refractive indices of the nematic to be measured, and hence a determination of the average density and order parameter of the liquid crystal film as a function of its thickness. Three distinct forces were measured, each reflecting a type of ordering of the liquid crystal near the mica surfaces. The first one results from elastic déformation in the liquid crystal ; it was only observed in a twisted planar sample where the 5CB molecules are oriented in different directions at the two mica surfaces. The second, measured in both the planar and homeotropic orientations, is attributed to an enhanced order parameter near the surfaces. Both of these are monotonic repulsive forces measurable below 80 nm. Finally, there is a short-range force which oscillates as a function of thickness, up to about six molecular layers, between attraction and repulsion. This results from ordering of the molecules in layers adjacent to the smooth solid surface. It is observed in both the planar and homeotropic orientations, and also in isotropic liquids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present results of a theoretical study of the effect of surface deformation on a macroscopic system composed of a solid surface interacting with a fluid drop through electrostatic double-layer forces. The analysis involves numerically solving a Laplace equation suitably modified to describe the shape of a liquid drop subjected to a repulsive double-layer force. The latter is evaluated in nonlinear mean-field theory. Some analytical results are also given. The results indicate that although deformation need not be significant on the macroscopic scale, its effect on the interaction is significant and modifies the picture usually presented in DLVO theory. The decay length of the exponential repulsion deviates marginally from the Debye length, dependent on the interfacial tension of the drop. More significantly, at separations where the double-layer force becomes comparable to the internal pressure of the drop, the net force between the two bodies, the local radius of curvature of the drop, and the amount of deformation grow abruptly. The results of this work are relevant to emulsion stability, micelle, vesicle, and cell interactions, and recent experiments on bubble-particle interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface forces between an air bubble and a flat mica surface immersed in aqueous electrolyte solutions have been investigated using a modified surface force apparatus. An analysis of the deformation of the air bubble with respect to the mutual position of the bubble and the mica surface, the capillary pressure, and the disjoining pressure allows the air-liquid surface electrical potential to be determined. The experiments show that a long-range, double-layer repulsion acts between the mica (which is negatively charged) and an air bubble in water and in various electrolyte solutions at low concentration, thereby indicating that the air bubble surface is negatively charged. However, there is clear evidence that charge regulation occurs at the air-water interface to maintain a constant surface potential, and as a result of this, the charge at this interface changes from negative to positive as the bubble approaches the mica surface. Because of the attraction that arises as a result of the charge reversal, a finite force is required to separate the bubble from the mica, though the mica remains wetted by the aqueous phase. At the low concentrations investigated, the potential on the gas-liquid interface is independent of the electrolyte type within experimental uncertainty.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dye-sensitized solar cells are an increasingly promising alternative to conventional silicon solar cells as a method of converting solar energy to electricity and thus providing an effectively inexhaustible energy source. However, the most efficient of these devices currently utilize liquid electrolytes, which suffer from the associated problems of leakage and evaporation. Hence, significant research is currently focused on the development of solid state alternatives. Here we report a new class of solid state electrolyte for these devices, organic ionic plastic crystal electrolytes, that allow relatively rapid diffusion of the redox couple through the matrix, which is critical to the cell performance. A range of different organic ionic plastic crystal materials, utilizing different cation and anion structures, have been investigated and the conductivities, diffusion rates and photovoltaic performance of the electrolytes are reported. The best material, utilizing the dicyanamide anion, achieves efficiencies of more than 5%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on the use of ionic liquid co-solvents in the preparation of polyacrylonitrile–natural polymer carbon fibers as low cost environmentally friendly alternatives to conventional carbon fibers precursors and processing solvents. We have characterized the structure properties of the new composites as a function of dissolving solvent using solid state NMR, DSC, FTIR and TGA. We show that the dissolving solvent plays a significant role in the properties of the new composites, we also find that the incorporation of the natural polymer additive impacts the thermal transition temperatures for the PAN

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using a column packed with fully porous particles, four methods for controlling the flow rates at which gradient elution runs are conducted in very high pressure liquid chromatography (VHPLC) were tested to determine whether reproducible thermal conditions could be achieved, such that subsequent analyses would proceed at nearly the same initial temperature. In VHPLC high flow rates are achieved, producing fast analyses but requiring high inlet pressures. The combination of high flow rates and high inlet pressures generates local heat, leading to temperature changes in the column. Usually in this case a post-run time is input into the analytical method to allow the return of the column temperature to its initial state. An alternative strategy involves operating the column without a post-run equilibration period and maintaining constant temperature variations for subsequent analysis after conducting one or a few separations to bring the column to a reproducible starting temperature. A liquid chromatography instrument equipped with a pressure controller was used to perform constant pressure and constant flow rate VHPLC separations. Six replicate gradient separations of a nine component mixture consisting of acetophenone, propiophenone, butyrophenone, valerophenone, hexanophenone, heptanophenone, octanophenone, benzophenone, and acetanilide dissolved in water/acetonitrile (65:35, v/v) were performed under various experimental conditions: constant flow rate, two sets of constant pressure, and constant pressure operation with a programmed flow rate. The relative standard deviations of the response factors for all the analytes are lower than 5% across the methods. Programming the flow rate to maintain a fairly constant pressure instead of using instrument controlled constant pressure improves the reproducibility of the retention times by a factor of 5, when plotting the chromatograms in time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe novel lyotropic liquid-crystalline (LLC) materials based on photoresponsive amphiphiles that exhibit rapid photoswitchable rheological properties of unprecedented magnitude between solidlike and liquidlike states. This was achieved through the synthesis of a novel azobenzene-containing surfactant (azo-surfactant) that actuates the transition between different LLC forms depending on illumination conditions. Initially, the azo-surfactant/water mixtures formed highly ordered and viscous LLC phases at 20-55 wt % water content. Spectroscopic, microscopic, and rheological analysis confirmed that UV irradiation induced the trans to cis isomerization of the azo-surfactant, leading to the disruption of the ordered LLC phases and a dramatic, rapid decrease in the viscosity and modulus resulting in a 3 orders of magnitude change from a solid (20,000 Pa) to a liquid (50 Pa) at rate of 13,500 Pa/s. Subsequent exposure to visible light reverses the transition, returning the viscosity essentially to its initial state. Such large, rapid, and reversible changes in rheological properties within this LLC system may open a door to new applications for photorheological fluids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the surge of interest in miniaturized implanted medical devices (IMDs), implantable power sources with small dimensions and biocompatibility are in high demand. Implanted battery/supercapacitor devices are commonly packaged within a case that occupies a large volume, making miniaturization difficult. In this study, we demonstrate a polymer electrolyte-enabled biocompatible magnesium-air battery device with a total thickness of approximately 300 μm. It consists of a biocompatible polypyrrole-para(toluene sulfonic acid) cathode and a bioresorbable magnesium alloy anode. The biocompatible electrolyte used is made of choline nitrate (ionic liquid) embedded in a biopolymer, chitosan. This polymer electrolyte is mechanically robust and offers a high ionic conductivity of 8.9 × 10(-3) S cm(-1). The assembled battery delivers a maximum volumetric power density of 3.9 W L(-1), which is sufficient to drive some types of IMDs, such as cardiac pacemakers or biomonitoring systems. This miniaturized, biocompatible magnesium-air battery may pave the way to a future generation of implantable power sources.