943 resultados para SIB Semantic Information Broker OSGI Semantic Web


Relevância:

50.00% 50.00%

Publicador:

Resumo:

Spatial data are particularly useful in mobile environments. However, due to the low bandwidth of most wireless networks, developing large spatial database applications becomes a challenging process. In this paper, we provide the first attempt to combine two important techniques, multiresolution spatial data structure and semantic caching, towards efficient spatial query processing in mobile environments. Based on the study of the characteristics of multiresolution spatial data (MSD) and multiresolution spatial query, we propose a new semantic caching model called Multiresolution Semantic Caching (MSC) for caching MSD in mobile environments. MSC enriches the traditional three-category query processing in semantic cache to five categories, thus improving the performance in three ways: 1) a reduction in the amount and complexity of the remainder queries; 2) the redundant transmission of spatial data already residing in a cache is avoided; 3) a provision for satisfactory answers before 100% query results have been transmitted to the client side. Our extensive experiments on a very large and complex real spatial database show that MSC outperforms the traditional semantic caching models significantly

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Collaborative recommendation is one of widely used recommendation systems, which recommend items to visitor on a basis of referring other's preference that is similar to current user. User profiling technique upon Web transaction data is able to capture such informative knowledge of user task or interest. With the discovered usage pattern information, it is likely to recommend Web users more preferred content or customize the Web presentation to visitors via collaborative recommendation. In addition, it is helpful to identify the underlying relationships among Web users, items as well as latent tasks during Web mining period. In this paper, we propose a Web recommendation framework based on user profiling technique. In this approach, we employ Probabilistic Latent Semantic Analysis (PLSA) to model the co-occurrence activities and develop a modified k-means clustering algorithm to build user profiles as the representatives of usage patterns. Moreover, the hidden task model is derived by characterizing the meaningful latent factor space. With the discovered user profiles, we then choose the most matched profile, which possesses the closely similar preference to current user and make collaborative recommendation based on the corresponding page weights appeared in the selected user profile. The preliminary experimental results performed on real world data sets show that the proposed approach is capable of making recommendation accurately and efficiently.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The main aim of the proposed approach presented in this paper is to improve Web information retrieval effectiveness by overcoming the problems associated with a typical keyword matching retrieval system, through the use of concepts and an intelligent fusion of confidence values. By exploiting the conceptual hierarchy of the WordNet (G. Miller, 1995) knowledge base, we show how to effectively encode the conceptual information in a document using the semantic information implied by the words that appear within it. Rather than treating a word as a string made up of a sequence of characters, we consider a word to represent a concept.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Category-specific disorders are frequently explained by suggesting that living and non-living things are processed in separate subsystems (e.g. Caramazza & Shelton, 1998). If subsystems exist, there should be benefits for normal processing, beyond the influence of structural similarity. However, no previous study has separated the relative influences of similarity and semantic category. We created novel examples of living and non-living things so category and similarity could be manipulated independently. Pre-tests ensured that our images evoked appropriate semantic information and were matched for familiarity. Participants were trained to associate names with the images and then performed a name-verification task under two levels of time pressure. We found no significant advantage for living things alongside strong effects of similarity. Our results suggest that similarity rather than category is the key determinant of speed and accuracy in normal semantic processing. We discuss the implications of this finding for neuropsychological studies. © 2005 Psychology Press Ltd.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This thesis presents a new approach to designing large organizational databases. The approach emphasizes the need for a holistic approach to the design process. The development of the proposed approach was based on a comprehensive examination of the issues of relevance to the design and utilization of databases. Such issues include conceptual modelling, organization theory, and semantic theory. The conceptual modelling approach presented in this thesis is developed over three design stages, or model perspectives. In the semantic perspective, concept definitions were developed based on established semantic principles. Such definitions rely on meaning - provided by intension and extension - to determine intrinsic conceptual definitions. A tool, called meaning-based classification (MBC), is devised to classify concepts based on meaning. Concept classes are then integrated using concept definitions and a set of semantic relations which rely on concept content and form. In the application perspective, relationships are semantically defined according to the application environment. Relationship definitions include explicit relationship properties and constraints. The organization perspective introduces a new set of relations specifically developed to maintain conformity of conceptual abstractions with the nature of information abstractions implied by user requirements throughout the organization. Such relations are based on the stratification of work hierarchies, defined elsewhere in the thesis. Finally, an example of an application of the proposed approach is presented to illustrate the applicability and practicality of the modelling approach.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Spoken language comprehension is known to involve a large left-dominant network of fronto-temporal brain regions, but there is still little consensus about how the syntactic and semantic aspects of language are processed within this network. In an fMRI study, volunteers heard spoken sentences that contained either syntactic or semantic ambiguities as well as carefully matched low-ambiguity sentences. Results showed ambiguity-related responses in the posterior left inferior frontal gyrus (pLIFG) and posterior left middle temporal regions. The pLIFG activations were present for both syntactic and semantic ambiguities suggesting that this region is not specialised for processing either semantic or syntactic information, but instead performs cognitive operations that are required to resolve different types of ambiguity irrespective of their linguistic nature, for example by selecting between possible interpretations or reinterpreting misparsed sentences. Syntactic ambiguities also produced activation in the posterior middle temporal gyrus. These data confirm the functional relationship between these two brain regions and their importance in constructing grammatical representations of spoken language.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this paper, we discuss how discriminative training can be applied to the hidden vector state (HVS) model in different task domains. The HVS model is a discrete hidden Markov model (HMM) in which each HMM state represents the state of a push-down automaton with a finite stack size. In previous applications, maximum-likelihood estimation (MLE) is used to derive the parameters of the HVS model. However, MLE makes a number of assumptions and unfortunately some of these assumptions do not hold. Discriminative training, without making such assumptions, can improve the performance of the HVS model by discriminating the correct hypothesis from the competing hypotheses. Experiments have been conducted in two domains: the travel domain for the semantic parsing task using the DARPA Communicator data and the Air Travel Information Services (ATIS) data and the bioinformatics domain for the information extraction task using the GENIA corpus. The results demonstrate modest improvements of the performance of the HVS model using discriminative training. In the travel domain, discriminative training of the HVS model gives a relative error reduction rate of 31 percent in F-measure when compared with MLE on the DARPA Communicator data and 9 percent on the ATIS data. In the bioinformatics domain, a relative error reduction rate of 4 percent in F-measure is achieved on the GENIA corpus.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The World Wide Web provides plentiful contents for Web-based learning, but its hyperlink-based architecture connects Web resources for browsing freely rather than for effective learning. To support effective learning, an e-learning system should be able to discover and make use of the semantic communities and the emerging semantic relations in a dynamic complex network of learning resources. Previous graph-based community discovery approaches are limited in ability to discover semantic communities. This paper first suggests the Semantic Link Network (SLN), a loosely coupled semantic data model that can semantically link resources and derive out implicit semantic links according to a set of relational reasoning rules. By studying the intrinsic relationship between semantic communities and the semantic space of SLN, approaches to discovering reasoning-constraint, rule-constraint, and classification-constraint semantic communities are proposed. Further, the approaches, principles, and strategies for discovering emerging semantics in dynamic SLNs are studied. The basic laws of the semantic link network motion are revealed for the first time. An e-learning environment incorporating the proposed approaches, principles, and strategies to support effective discovery and learning is suggested.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this demonstration, we will present a semantic environment called the K-Box. The K-Box supports the lightweight integration of knowledge tools, with a focus on semantic tools, but with the flexibility to integrate natural language and conventional tools. We discuss the implementation of the framework, and two existing applications, including details of a new application for developers of semantic workflows. The demonstration will be of interest to developers and researchers of ontology-based knowledge management systems, and semantic desktops, and to analysts working with cross-media information. © 2011 ACM.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This paper identifies gaps in standardization of agri-food logistics. Out of the European FP7 SmartAgriFood project a framework for classifying existing standards within the agri-food supply chain is introduced. Furthermore the characteristics to which a semantic standard should adhere are investigated. The standards classified as semantic out of the framework are assessed along these properties. The resulting conclusion is that the standards that are already present in the chain are more focused on syntax and lack semantic properties.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The aim of our work is to present solutions and a methodical support for automated techniques and procedures in domain engineering, in particular for variability modeling. Our approach is based upon Semantic Modeling concepts, for which semantic description, representation patterns and inference mechanisms are defined. Thus, model-driven techniques enriched with semantics will allow flexibility and variability in representation means, reasoning power and the required analysis depth for the identification, interpretation and adaptation of artifact properties and qualities.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Possibilities for using semantic parsing to estimate the correspondence of text materials to teaching aims, correspondence of test task to theoretical materials and other problems arising during the distance course designing and educational process itself in e-learning environments.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

False friends are pairs of words in two languages that are perceived as similar but have different meanings. We present an improved algorithm for acquiring false friends from sentence-level aligned parallel corpus based on statistical observations of words occurrences and co-occurrences in the parallel sentences. The results are compared with an entirely semantic measure for cross-lingual similarity between words based on using the Web as a corpus through analyzing the words’ local contexts extracted from the text snippets returned by searching in Google. The statistical and semantic measures are further combined into an improved algorithm for identification of false friends that achieves almost twice better results than previously known algorithms. The evaluation is performed for identifying cognates between Bulgarian and Russian but the proposed methods could be adopted for other language pairs for which parallel corpora and bilingual glossaries are available.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This article presents the principal results of the doctoral thesis “Semantic-oriented Architecture and Models for Personalized and Adaptive Access to the Knowledge in Multimedia Digital Library” by Desislava Ivanova Paneva-Marinova (Institute of Mathematics and Informatics), successfully defended before the Specialised Academic Council for Informatics and Mathematical Modelling on 27 October, 2008.