968 resultados para Repeat moves
Resumo:
Background Ulnar nerve decompression at the elbow traditionally requires regional or general anesthesia. We wished to assess the feasibility of performing ulnar nerve decompression and transposition at the elbow under local anesthesia. Methods We examined retrospectively the charts of 50 consecutive patients having undergone ulnar nerve entrapment surgery either under general or local anesthesia. Patients were asked to estimate pain on postoperative days 1 and 7 and satisfaction was assessed at 1 year. Results On day 1, pain was comparable among all groups. On day 7, pain scores were twice as high when transposition was performed under general anesthesia when compared with local anesthesia. Patient satisfaction was slightly increased in the local anesthesia group. These patients were significantly more willing to repeat the surgery. Conclusion Ulnar nerve decompression and transposition at the elbow can be performed under local anesthesia without added morbidity when compared with general anesthesia.
Resumo:
As modern molecular biology moves towards the analysis of biological systems as opposed to their individual components, the need for appropriate mathematical and computational techniques for understanding the dynamics and structure of such systems is becoming more pressing. For example, the modeling of biochemical systems using ordinary differential equations (ODEs) based on high-throughput, time-dense profiles is becoming more common-place, which is necessitating the development of improved techniques to estimate model parameters from such data. Due to the high dimensionality of this estimation problem, straight-forward optimization strategies rarely produce correct parameter values, and hence current methods tend to utilize genetic/evolutionary algorithms to perform non-linear parameter fitting. Here, we describe a completely deterministic approach, which is based on interval analysis. This allows us to examine entire sets of parameters, and thus to exhaust the global search within a finite number of steps. In particular, we show how our method may be applied to a generic class of ODEs used for modeling biochemical systems called Generalized Mass Action Models (GMAs). In addition, we show that for GMAs our method is amenable to the technique in interval arithmetic called constraint propagation, which allows great improvement of its efficiency. To illustrate the applicability of our method we apply it to some networks of biochemical reactions appearing in the literature, showing in particular that, in addition to estimating system parameters in the absence of noise, our method may also be used to recover the topology of these networks.
Resumo:
The objective of this work was to analyze coffee (Coffea arabica) genotypes resistant to the coffee leaf miner (Leucoptera coffeella) using microsatellite markers. Sixty-six loci were evaluated, of which 63 were obtained from the Brazilian Coffee Expressed Sequence Tag (EST) database. These loci were amplified in bulks of individuals from F5 progenies of 'Siriema' (C. arabica x C. racemosa) resistant and susceptible to the insect, in eight samples of C. racemosa, and in a F6 population of 'Siriema' with 91 individuals segregating for resistance to the leaf miner. Polymorphisms were verified for two simple sequence repeat (SSR) loci in bulks of the susceptible progenies. The two polymorphic alleles were present in around 70% of the susceptible genotypes in F5 and in approximately 90% of the susceptible individuals in F6. However, the polymorphic EST-SSR markers among populations contrasting for resistance to leaf miner were not correlated to the evaluated characteristics. SSR markers show inter- and intraspecific polymorphism in C. arabica and C. racemosa.
Resumo:
The Polochic-Motagua fault systems (PMFS) are part of the sinistral transform boundary between the North American and Caribbean plates. To the west, these systems interact with the subduction zone of the Cocos plate, forming a subduction-subduction-transform triple junction. The North American plate moves westward relative to the Caribbean plate. This movement does not affect the geometry of the subducted Cocos plate, which implies that deformation is accommodated entirely in the two overriding plates. Structural data, fault kinematic analysis, and geomorphic observations provide new elements that help to understand the late Cenozoic evolution of this triple junction. In the Miocene, extension and shortening occurred south and north of the Motagua fault, respectively. This strain regime migrated northward to the Polochic fault after the late Miocene. This shift is interpreted as a ``pull-up'' of North American blocks into the Caribbean realm. To the west, the PMFS interact with a trench-parallel fault zone that links the Tonala fault to the Jalpatagua fault. These faults bound a fore-arc sliver that is shared by the two overriding plates. We propose that the dextral Jalpatagua fault merges with the sinistral PMFS, leaving behind a suturing structure, the Tonala fault. This tectonic ``zipper'' allows the migration of the triple junction. As a result, the fore-arc sliver comes into contact with the North American plate and helps to maintain a linear subduction zone along the trailing edge of the Caribbean plate. All these processes currently make the triple junction increasingly diffuse as it propagates eastward and inland within both overriding plates.
Resumo:
Tandemly repeated insertion sequence IS21, located on a suicide plasmid, promoted replicon fusion with bacteriophage lambda in vitro in the presence of ATP. This reaction was catalyzed in a cell extract containing the 45-kDa IstA protein (cointegrase) and the 30-kDa IstB helper protein of IS21 after both proteins had been overproduced in Escherichia coli. Without IstB, replicon fusion was inefficient and did not produce the 4-bp target duplications typical of IS21.
Resumo:
The objective of this work was to determine the effect of male sterility or manual recombination on genetic variability of rice recurrent selection populations. The populations CNA-IRAT 4, with a gene for male sterility, and CNA 12, which was manually recombined, were evaluated. Genetic variability among selection cycles was estimated using14 simple sequence repeat (SSR) markers. A total of 926 plants were analyzed, including ten genitors and 180 individuals from each of the evaluated cycles (1, 2 and 5) of the population CNA-IRAT 4, and 16 genitors and 180 individuals from each of the cycles (1 and 2) of CNA 12. The analysis allowed the identification of alleles not present among the genitors for both populations, in all cycles, especially for the CNA-IRAT 4 population. These alleles resulted from unwanted fertilization with genotypes that were not originally part of the populations. The parameters of Wright's F-statistic (F IS and F IT) indicated that the manual recombination expands the genetic variability of the CNA 12 population, whereas male sterility reduces the one of CNA-IRAT 4.
Resumo:
In soccer, dead-ball moves are those in which the ball is returned to play from a stationary position following an interruption of play. The aim of this study was to analyse the effectiveness of one such dead-ball move, namely corner kicks, and to identify the key variables that determine the success of a shot or header following a corner, thereby enabling a model of successful corner kicks to be proposed. We recorded 554 corner kicks performed during the 2010 World Cup in South Africa and carried out a univariate, bivariate and multivariate analysis of the data. The results indicated that corners were of limited effectiveness in terms of the success of subsequent shots or headers. The analysis also revealed a series of variables that were significantly related to one another, and this enabled us to propose an explanatory model. Although this model had limited explanatory power, it nonetheless helps to understand the execution of corner kicks in practical terms.
Resumo:
Fungi are a large group of eukaryotes found in nearly all ecosystems. More than 250 fungal genomes have already been sequenced, greatly improving our understanding of fungal evolution, physiology, and development. However, for the Pezizomycetes, an early-diverging lineage of filamentous ascomycetes, there is so far only one genome available, namely that of the black truffle, Tuber melanosporum, a mycorrhizal species with unusual subterranean fruiting bodies. To help close the sequence gap among basal filamentous ascomycetes, and to allow conclusions about the evolution of fungal development, we sequenced the genome and assayed transcriptomes during development of Pyronema confluens, a saprobic Pezizomycete with a typical apothecium as fruiting body. With a size of 50 Mb and ~13,400 protein-coding genes, the genome is more characteristic of higher filamentous ascomycetes than the large, repeat-rich truffle genome; however, some typical features are different in the P. confluens lineage, e.g. the genomic environment of the mating type genes that is conserved in higher filamentous ascomycetes, but only partly conserved in P. confluens. On the other hand, P. confluens has a full complement of fungal photoreceptors, and expression studies indicate that light perception might be similar to distantly related ascomycetes and, thus, represent a basic feature of filamentous ascomycetes. Analysis of spliced RNA-seq sequence reads allowed the detection of natural antisense transcripts for 281 genes. The P. confluens genome contains an unusually high number of predicted orphan genes, many of which are upregulated during sexual development, consistent with the idea of rapid evolution of sex-associated genes. Comparative transcriptomics identified the transcription factor gene pro44 that is upregulated during development in P. confluens and the Sordariomycete Sordaria macrospora. The P. confluens pro44 gene (PCON_06721) was used to complement the S. macrospora pro44 deletion mutant, showing functional conservation of this developmental regulator.
Resumo:
Dominant missense mutations in FLNB, encoding the actin-cross linking protein filamin B (FLNB), cause a broad range of skeletal dysplasias with varying severity by an unknown mechanism. Here these FLNB mutations are shown to cluster in exons encoding the actin-binding domain (ABD) and filamin repeats surrounding the flexible hinge 1 region of the FLNB rod domain. Despite being positioned in domains that bind actin, it is unknown if these mutations perturb cytoskeletal structure. Expression of several full-length FLNB constructs containing ABD mutations resulted in the appearance of actin-containing cytoplasmic focal accumulations of the substituted protein to a degree that was correlated with the severity of the associated phenotypes. In contrast, study of mutations leading to substitutions in the FLNB rod domain that result in the same phenotypes as ABD mutations demonstrated that with only one exception disease-associated substitutions, surrounding hinge 1 demonstrated no tendency to form actin-filamin foci. The exception, a substitution in filamin repeat 6, lies within a region previously implicated in filamin-actin binding. These data are consistent with mutations in the ABD conferring enhanced actin-binding activity but suggest that substitutions affecting repeats near the flexible hinge region of FLNB precipitate the same phenotypes through a different mechanism.
Resumo:
While there is evidence that the two ubiquitously expressed thyroid hormone (T3) receptors, TRalpha1 and TRbeta1, have distinct functional specificities, the mechanism by which they discriminate potential target genes remains largely unexplained. In this study, we demonstrate that the thyroid hormone response elements (TRE) from the malic enzyme and myelin basic protein genes (METRE and MBPTRE) respectively, are not functionally equivalent. The METRE, which is a direct repeat motif with a 4-base pair gap between the two half-site hexamers binds thyroid hormone receptor as a heterodimer with 9-cis-retinoic acid receptor (RXR) and mediates a high T3-dependent activation in response to TRalpha1 or TRbeta1 in NIH3T3 cells. In contrast, the MBPTRE, which consists of an inverted palindrome formed by two hexamers spaced by 6 base pairs, confers an efficient transactivation by TRbeta1 but a poor transactivation by TRalpha1. While both receptors form heterodimers with RXR on MBPTRE, the poor transactivation by TRalpha1 correlates also with its ability to bind efficiently as a monomer. This monomer, which is only observed with TRalpha1 bound to MBPTRE, interacts neither with N-CoR nor with SRC-1, explaining its functional inefficacy. However, in Xenopus oocytes, in which RXR proteins are not detectable, the transactivation mediated by TRalpha1 and TRbeta1 is equivalent and independent of a RXR supply, raising the question of the identity of the thyroid hormone receptor partner in these cells. Thus, in mammalian cells, the binding characteristics of TRalpha1 to MBPTRE (i.e. high monomer binding efficiency and low transactivation activity) might explain the particular pattern of T3 responsiveness of MBP gene expression during central nervous system development.
Resumo:
Combinatorial optimization involves finding an optimal solution in a finite set of options; many everyday life problems are of this kind. However, the number of options grows exponentially with the size of the problem, such that an exhaustive search for the best solution is practically infeasible beyond a certain problem size. When efficient algorithms are not available, a practical approach to obtain an approximate solution to the problem at hand, is to start with an educated guess and gradually refine it until we have a good-enough solution. Roughly speaking, this is how local search heuristics work. These stochastic algorithms navigate the problem search space by iteratively turning the current solution into new candidate solutions, guiding the search towards better solutions. The search performance, therefore, depends on structural aspects of the search space, which in turn depend on the move operator being used to modify solutions. A common way to characterize the search space of a problem is through the study of its fitness landscape, a mathematical object comprising the space of all possible solutions, their value with respect to the optimization objective, and a relationship of neighborhood defined by the move operator. The landscape metaphor is used to explain the search dynamics as a sort of potential function. The concept is indeed similar to that of potential energy surfaces in physical chemistry. Borrowing ideas from that field, we propose to extend to combinatorial landscapes the notion of the inherent network formed by energy minima in energy landscapes. In our case, energy minima are the local optima of the combinatorial problem, and we explore several definitions for the network edges. At first, we perform an exhaustive sampling of local optima basins of attraction, and define weighted transitions between basins by accounting for all the possible ways of crossing the basins frontier via one random move. Then, we reduce the computational burden by only counting the chances of escaping a given basin via random kick moves that start at the local optimum. Finally, we approximate network edges from the search trajectory of simple search heuristics, mining the frequency and inter-arrival time with which the heuristic visits local optima. Through these methodologies, we build a weighted directed graph that provides a synthetic view of the whole landscape, and that we can characterize using the tools of complex networks science. We argue that the network characterization can advance our understanding of the structural and dynamical properties of hard combinatorial landscapes. We apply our approach to prototypical problems such as the Quadratic Assignment Problem, the NK model of rugged landscapes, and the Permutation Flow-shop Scheduling Problem. We show that some network metrics can differentiate problem classes, correlate with problem non-linearity, and predict problem hardness as measured from the performances of trajectory-based local search heuristics.
Resumo:
Background: To determine whether misalignment structures such as duplications, repeats, and palindromes are associated to insertions/deletions (indels) in gp120, indicating that indels are indeed frameshift mutations generated by DNA misalignment mechanism. Methods: Cloning and sequencing of a fragment of HIV-1 gp120 spanning C2-C4 derived from plasma RNA in 12 patients with early chronic disease and naïve to antiretroviral therapy. Results: Indels in V4 involved always insertion and deletion of duplicated nucleotide segments, and AAT repeats, and were associated to the presence of palindromic sequences. No duplications were detected in V3 and C3. Palindromic sequences occurred with similar frequencies in V3, C3 and V4; the frequency of palindromes in individual genes was found to be significantly higher in structural (gp120, p ≤ 3.00E-7) and significantly lower in regulatory (Tat, p ≤ 9.00E-7) genes, as compared to the average frequency calculated over the full genome. Discussion: Indels in V4 are associated to misalignment structures (i.e. duplications repeat and palindromes) indicating DNA misalignment as the mechanism underlying length variation in V4. The finding that indels in V4 are caused by DNA misalignment has some very important implications: 1) indels in V4 are likely to occur in proviral DNA (and not in RNA), after integration of HIV into the host genome; 2) they are likely to occur as progressive modifications of the early founder virus during chronic infection, as more and more cells get infected; 3) frameshift mutations involving any number of base pairs are likely to occur evenly across gp120; however, only those mutants carrying a functional gp120 (indels as multiples of three base pairs) will be able to perpetuate the virus cycle and to keep spreading through the population.
Resumo:
We present the application of a real-time quantitative PCR assay, previously developed to measure relative telomere length in humans and mice, to two bird species, the zebra finch Taeniopygia guttata and the Alpine swift Apus melba. This technique is based on the PCR amplification of telomeric (TTAGGG)(n) sequences using specific oligonucleotide primers. Relative telomere length is expressed as the ratio (T/S) of telomere repeat copy number (T) to control single gene copy number (S). This method is particularly useful for comparisons of individuals within species, or where the same individuals are followed longitudinally. We used glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a single control gene. In both species, we validated our PCR measurements of relative telomere length against absolute measurements of telomere length determined by the conventional method of quantifying telomere terminal restriction fragment (TRF) lengths using both the traditional Southern blot analysis (Alpine swifts) and in gel hybridization (zebra finches). As found in humans and mice, telomere lengths in the same sample measured by TRF and PCR were well correlated in both the Alpine swift and the zebra finch.. Hence, this PCR assay for measurement of bird telomeres, which is fast and requires only small amounts of genomic DNA, should open new avenues in the study of environmental factors influencing variation in telomere length, and how this variation translates into variation in cellular and whole organism senescence.
Resumo:
In eukaryotes, Rad51 protein is responsible for the recombinational repair of double-strand DNA breaks. Rad51 monomers cooperatively assemble on exonuclease-processed broken ends forming helical nucleo-protein filaments that can pair with homologous regions of sister chromatids. Homologous pairing allows the broken ends to be reunited in a complex but error-free repair process. Rad51 protein has ATPase activity but its role is poorly understood, as homologous pairing is independent of adenosine triphosphate (ATP) hydrolysis. Here we use magnetic tweezers and electron microscopy to investigate how changes of DNA twist affect the structure of Rad51-DNA complexes and how ATP hydrolysis participates in this process. We show that Rad51 protein can bind to double-stranded DNA in two different modes depending on the enforced DNA twist. The stretching mode is observed when DNA is unwound towards a helical repeat of 18.6 bp/turn, whereas a non-stretching mode is observed when DNA molecules are not permitted to change their native helical repeat. We also show that the two forms of complexes are interconvertible and that by enforcing changes of DNA twist one can induce transitions between the two forms. Our observations permit a better understanding of the role of ATP hydrolysis in Rad51-mediated homologous pairing and strand exchange.
Resumo:
In natural settings the same sound source is often heard repeatedly, with variations in spectro-temporal and spatial characteristics. We investigated how such repetitions influence sound representations and in particular how auditory cortices keep track of recently vs. often heard objects. A set of 40 environmental sounds was presented twice, i.e. as prime and as repeat, while subjects categorized the corresponding sound sources as living vs. non-living. Electrical neuroimaging analyses were applied to auditory evoked potentials (AEPs) comparing primes vs. repeats (effect of presentation) and the four experimental sections. Dynamic analysis of distributed source estimations revealed i) a significant main effect of presentation within the left temporal convexity at 164-215ms post-stimulus onset; and ii) a significant main effect of section in the right temporo-parietal junction at 166-213ms. A 3-way repeated measures ANOVA (hemisphere×presentation×section) applied to neural activity of the above clusters during the common time window confirmed the specificity of the left hemisphere for the effect of presentation, but not that of the right hemisphere for the effect of section. In conclusion, spatio-temporal dynamics of neural activity encode the temporal history of exposure to sound objects. Rapidly occurring plastic changes within the semantic representations of the left hemisphere keep track of objects heard a few seconds before, independent of the more general sound exposure history. Progressively occurring and more long-lasting plastic changes occurring predominantly within right hemispheric networks, which are known to code for perceptual, semantic and spatial aspects of sound objects, keep track of multiple exposures.