966 resultados para Protein Antigens
Resumo:
Immunoneutralization of the maternal riboflavin carrier protein in the pregnant rat with antibodies to chicken egg vitamin carrier has earlier been shown to terminate their pregnancies. In order to understand the nature of the epitopic conformations capable of eliciting antibodies bioneutralizing the endogenous riboflavin carrier protein in the pregnant rat, we compared pregnancy progression in the fertile rodents following active immunization with either the native, SDS-denatured, reduced-carboxymethylated or SDS-treated reduced carboxymethylated avian egg white riboflavin carrier protein. The data revealed that despite the total antibody titers being higher in the animals immunized with the native protein, the antibodies elicited against the denatured avian vitamin carrier exhibited relatively better potencies to bioneutralize the endogenous maternal protein as evidenced by higher rates of early fetal resorption.
Resumo:
The significance of two interface arginine residues on the structural integrity of an obligatory dimeric enzyme thymidylate synthase (TS) from Lactobacillus casei was investigated by thermal and chemical denaturation. While the R178F mutant showed apparent stability to thermal denaturation by its decreased tendency to aggregate, the Tm of the R218K mutant was lowered by 5 degrees C. Equilibrium denaturation studies in guanidinium chloride (GdmCl) and urea indicate that in both the mutants, replacement of Arg residues results in more labile quaternary and tertiary interactions. Circular dichroism studies in aqueous buffer suggest that the protein interior in R218K may be less well-packed as compared to the wild type protein. The results emphasize that quaternary interactions may influence the stability of the tertiary fold of TS. The amino acid replacements also lead to notable alteration in the ability of the unfolding intermediate of TS to aggregate. The aggregated state of partially unfolded intermediate in the R178F mutant is stable over a narrower range of denaturant concentrations. In contrast, there is an exaggerated tendency on the part of R218K to aggregate in intermediate concentrations of the denaturant. The 3 A crystal structure of the R178F mutant reveals no major structural change as a consequence of amino acid substitution. The results may be rationalized in terms of mutational effects on both the folded and unfolded state of the protein. Site specific amino acid substitutions are useful in identifying specific regions of TS involved in association of non-native protein structures.
Resumo:
A phosphorylcholine-binding protein from the hemolymph of the snail Achatina fulica was purified to near homogeneity using a Sepharose phenylphosphorylcholine affinity column. The protein bound to the affinity column was eluted with 5 mM phosphorylcholine as a single symmetrical peak. The purified protein (400 Kda) contained 35–40% carbohydrate. On SDS-PAGE the protein separated into two bands of 20 and 24 Kda, and had a pI of 5.9. On immunodiffusion, antiserum to the snail phosphorylcholine binding protein did not cross-react against other phosphorylcholine binding proteins, like rat serum phosphorylcholine-binding protein (PCBP), limulus C-reactive protein (CRP), or human CRP. On pretreatment of the snail hemolymph with this antiserum, the hemagglutination titer of the hemolymph was markedly decreased. The purified snail phosphorylcholine binding protein agglutinated rabbit erythrocytes in the absence of divalent cation (Ca+2) but trace amount of Ca+2 increased its binding. The strongest inhibitor of the agglutination reaction was lactose, followed by melibiose and 2-deoxygalactose. The relationships of the snail phosphorylcholine binding protein to other hemolymph agglutinins and to CRPs are discussed in light of common phylogeny.
Resumo:
To understand the molecular basis of gene targeting, we have studied interactions of nucleoprotein filaments comprised of single-stranded DNA and RecA protein with chromatin templates reconstituted from linear duplex DNA and histones. We observed that for the chromatin templates with histone/DNA mass ratios of 0.8 and 1.6, the efficiency of homologous pairing was indistinguishable from that of naked duplex DNA but strand exchange was repressed. In contrast, the chromatin templates with a histone/DNA mass ratio of 9.0 supported neither homologous pairing nor strand exchange. The addition of histone H1, in stoichiometric amounts, to chromatin templates quells homologous pairing. The pairing of chromatin templates with nucleoprotein filaments of RecA protein-single-stranded DNA proceeded without the production of detectable networks of DNA, suggesting that coaggregates are unlikely to be the intermediates in homologous pairing. The application of these observations to strategies for gene targeting and their implications for models of genetic recombination are discussed.
Resumo:
A simple and efficient procedure for the purification of the riboflavin-binding protein from hen's egg yolk is described. This method involves the removal by exclusion of lipoproteins and subsequent fractionation of soluble yolk proteins held on a DEAE-cellulose column by a salt gradient which is followed by purification by gel filtration on Sephadex G-100. The protein thus isolated is homogeneous by various physicoehemical, immunological, and functional criteria.
Resumo:
A protein exhibiting immunological cross-reactivity with the chicken egg-white riboflavin carrier protein was detected by radioimmunoassay in the eggs and serum of the fresh water fish Cyprinus carpio and subsequently purified to homogeneity by use of affinity chromatography. Fish riboflavin carrier protein resembled chicken riboflavin carrier protein with respect to most of its physicochemical characteristics. The major epitopes of chicken riboflavin carrier protein were shown to be conserved in the fish protein as probed with monoclonal antibodies to the avian vitamin carrier.
Resumo:
Effects of undernutrition and protein malnutrition on the quantitative and qualitative changes in myelin isolated from rat brain at 3 and 8 weeks of age were investigated. Undernutrition during suckling period was induced by increasing the litter size, and continued from the 3rd to the 8th week by limited food intake, or the rats were rehabilitated with adequate food. Protein malnutrition was induced by feeding the lactating dams 5% protein diet as against 25% protein diet in controls. The protein malnourished rats were rehabilitated from the 3rd to the 8th week with the normal 25% protein diet. Undernutrition produced 16% and 35% reductions in the myelin content at 3 and 8 weeks of age, respectively, and was only partially restored on rehabilitation. Protein malnutrition caused more drastic reduction of 27% in the myelin content at 3 weeks, which was also partially restored on rehabilitation. The specific activity of 2′,3′-cyclic nucleotide 3′-phosphohydrolase was not affected by undernutrition, whereas protein malnutrition caused a 25% reduction at 3 weeks, which was totally reversed by rehabilitation. Undernutrition had not altered the relative composition of myelin proteins, but protein malnutrition resulted in a significant reduction in the proteolipid protein at 3 weeks of age, which could be reversed by rehabilitation.
Resumo:
A thiamin-binding protein was isolated and characterized from chicken egg white by affinity chromatography on thiamin pyrophosphate coupled to aminoethyl-Sepharose. The high specificity of interaction between the thiamin-binding protein and the riboflavin-binding protein of the egg white, with a protein/protein molar ratio of 1.0, led to the development of an alternative procedure that used the riboflavin-binding protein immobilized on CNBr-activated Sepharose as the affinity matrix. The thiamin-binding protein thus isolated was homogeneous by the criteria of polyacrylamide-gel disc electrophoresis, double immunodiffusion and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, had a mol.wt. of 38,000 +/- 2000 and was not a glycoprotein. The protein bound [14C]thiamin was a molar ratio of 1.0, with dissociation constant (Kd) 0.3 micrometer.
Resumo:
Determining the sequence of amino acid residues in a heteropolymer chain of a protein with a given conformation is a discrete combinatorial problem that is not generally amenable for gradient-based continuous optimization algorithms. In this paper we present a new approach to this problem using continuous models. In this modeling, continuous "state functions" are proposed to designate the type of each residue in the chain. Such a continuous model helps define a continuous sequence space in which a chosen criterion is optimized to find the most appropriate sequence. Searching a continuous sequence space using a deterministic optimization algorithm makes it possible to find the optimal sequences with much less computation than many other approaches. The computational efficiency of this method is further improved by combining it with a graph spectral method, which explicitly takes into account the topology of the desired conformation and also helps make the combined method more robust. The continuous modeling used here appears to have additional advantages in mimicking the folding pathways and in creating the energy landscapes that help find sequences with high stability and kinetic accessibility. To illustrate the new approach, a widely used simplifying assumption is made by considering only two types of residues: hydrophobic (H) and polar (P). Self-avoiding compact lattice models are used to validate the method with known results in the literature and data that can be practically obtained by exhaustive enumeration on a desktop computer. We also present examples of sequence design for the HP models of some real proteins, which are solved in less than five minutes on a single-processor desktop computer Some open issues and future extensions are noted.
Resumo:
The structure and properties of the double-helical form of the alternating copolymer poly(dA-dT) are considered. Different lines of evidence are interpreted in terms of a structure in which every second phosphate-diester linkage has a conformation different from that of the normal B form. A rationale for this “alternating-B” structure is given which provides an explanation for the effects of chemical modifications of the T residues on the binding of the poly(dA-dT)· poly(dA-dT) to the lac repressor of Escherichia coli.
Resumo:
The mechanism underlying homeostatic regulation of the plasma levels of free retinol-binding protein and free thyroxine, the systemic distribution of which is of great importance, has been investigated. A simple method has been developed to determine the rate of dissociation of a ligand from the binding protein. Analysis of the dissociation process of retinol-binding protein from prealbumin-2 reveals that the free retinol-binding protein pool undergoes massive flux, and the prealbumin-2 participates in homeostatic regulation of the free retinol-binding protein pool. Studies on the dissociation process of thyroxine from its plasma carrier proteins show that the various plasma carrier proteins share two roles. Of the two types of protein, the thyroxine-binding globulin (the high affinity binding protein) contributes only 27% of the free thyroxine in a rapid transition process, despite its being the major binding protein. But prealbumin-2, which has lower affinity towards thyroxine, participates mainly in a rapid flux of the free thyroxine pool. Thus thyroxine-binding globulin acts predominantly as a plasma reservoir of thyroxine, and also probably in the �buffering� action on plasma free thyroxine level, in the long term, while prealbumin-2 participates mainly in the maintainance of constancy of free thyroxine levels even in the short term. The existence of these two types of binding protein facilitates compensation for the metabolic flux of the free ligand and maintenance of the thyroxine pool within a very narrow range.
Resumo:
A specific membrane receptor for plasma retinol-binding protein has been demonstrated in testicular cells. Prealbumin-2 did not show any specific binding to the membrane. The affinity of retinol-binding protein for receptor drastically decreases upon delivery of retinol and the retinol-binding protein does not enter the cell. The mechanism of delivery of retinol to the target cell by plasma retinol-binding protein has been investigated. The process involves two steps: direct binding of retinol-binding protein to the receptor and uptake of retinol by the target cell with a concomitant drastic reduction in the affinity of the retinol-binding protein to the receptor. Probably the second step of the process needs a cytosolic factor, possibly the cellular retinol-binding protein or an enzyme.The binding of retinol-binding protein to the receptor is saturable and reverible. The interaction shows a Kd value of 2.1 · 10−10 M. The specific binding of a retinol-binding protein with great affinity has been employed in the development of a method for radioassay of the receptor. The receptor level of the gonadal cell has been found to vary with the stage of differentiation. The receptor concentrations in 11-week-old birds and adult birds are comparable. Testoterone treatment of 11-week-old birds produced a substantial increase in the receptor concentration over control, while the protein content increased marginally, indicating that, probably, synthesis of the receptor is specifically induced by testoterone during spermatogenesis, and the concentration of receptor is relatively higher before the formation of the acrosome.
Resumo:
Using a pharmacological inhibitor of Hsp90 in cultured malarial parasite, we have previously implicated Plasmodium falciparum Hsp90 (PfHsp90) as a drug target against malaria. In this study, we have biochemically characterized PfHsp90 in terms of its ATPase activity and interaction with its inhibitor geldanamycin (GA) and evaluated its potential as a drug target in a preclinical mouse model of malaria. In addition, we have explored the potential of Hsp90 inhibitors as drugs for the treatment of Trypanosoma infection in animals. Our studies with full-length PfHsp90 showed it to have the highest ATPase activity of all known Hsp90s; its ATPase activity was 6 times higher than that of human Hsp90. Also, GA brought about more robust inhibition of PfHsp90 ATPase activity as compared with human Hsp90. Mass spectrometric analysis of PfHsp90 expressed in P. falciparum identified a site of acetylation that overlapped with Aha1 and p23 binding domain, suggesting its role in modulating Hsp90 multichaperone complex assembly. Indeed, treatment of P. falciparum cultures with a histone deacetylase inhibitor resulted in a partial dissociation of PfHsp90 complex. Furthermore, we found a well known, semisynthetic Hsp90 inhibitor, namely 17-(allylamino)-17-demethoxygeldanamycin, to be effective in attenuating parasite growth and prolonging survival in a mouse model of malaria. We also characterized GA binding to Hsp90 from another protozoan parasite, namely Trypanosoma evansi. We found 17-(allylamino)-17-demethoxygeldanamycin to potently inhibit T. evansi growth in a mouse model of trypanosomiasis. In all, our biochemical characterization, drug interaction, and animal studies supported Hsp90 as a drug target and its inhibitor as a potential drug against protozoan diseases.
Resumo:
The three dimensional structure of a protein is formed and maintained by the noncovalent interactions among the amino acid residues of the polypeptide chain These interactions can be represented collectively in the form of a network So far such networks have been investigated by considering the connections based on distances between the amino acid residues Here we present a method of constructing the structure network based on interaction energies among the amino acid residues in the protein We have investigated the properties of such protein energy based networks (PENs) and have shown correlations to protein structural features such as the clusters of residues involved in stability formation of secondary and super secondary structural units Further we demonstrate that the analysis of PENs in terms of parameters such as hubs and shortest paths can provide a variety of biologically important information such as the residues crucial for stabilizing the folded units and the paths of communication between distal residues in the protein Finally the energy regimes for different levels of stabilization in the protein structure have clearly emerged from the PEN analysis