966 resultados para Project method


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a genetic algorithm for the resource constrained multi-project scheduling problem. The chromosome representation of the problem is based on random keys. The schedules are constructed using a heuristic that builds parameterized active schedules based on priorities, delay times, and release dates defined by the genetic algorithm. The approach is tested on a set of randomly generated problems. The computational results validate the effectiveness of the proposed algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the shear modulus and strength of the acrylic adhesive 3M® DP 8005 was evaluated by two different methods: the Thick Adherend Shear Test (TAST) and the Notched Plate Shear Method (Arcan). However, TAST standards advise the use of a special extensometer attached to the specimen, which requires a very experienced technician. In the present study, the adhesive shear displacement for the TAST was measured using an optical technique, and also with a conventional inductive extensometer of 25 mm used for tensile tests. This allowed for an assessment of suitability of using a conventional extensometer to measure this parameter. Since the results obtained by the two techniques are identical, it can be concluded that using a conventional extensometer is a valid option to obtain the shear modulus for the particular adhesive used. In the Arcan tests, the adhesive shear displacement was only measured using the optical technique. This work also aimed the comparison of shear modulus and strength obtained by the TAST and Arcan test methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is important to understand and forecast a typical or a particularly household daily consumption in order to design and size suitable renewable energy systems and energy storage. In this research for Short Term Load Forecasting (STLF) it has been used Artificial Neural Networks (ANN) and, despite the consumption unpredictability, it has been shown the possibility to forecast the electricity consumption of a household with certainty. The ANNs are recognized to be a potential methodology for modeling hourly and daily energy consumption and load forecasting. Input variables such as apartment area, numbers of occupants, electrical appliance consumption and Boolean inputs as hourly meter system were considered. Furthermore, the investigation carried out aims to define an ANN architecture and a training algorithm in order to achieve a robust model to be used in forecasting energy consumption in a typical household. It was observed that a feed-forward ANN and the Levenberg-Marquardt algorithm provided a good performance. For this research it was used a database with consumption records, logged in 93 real households, in Lisbon, Portugal, between February 2000 and July 2001, including both weekdays and weekend. The results show that the ANN approach provides a reliable model for forecasting household electric energy consumption and load profile. © 2014 The Author.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE To evaluate the viability of a professional specialist in intra-hospital committees of organ and tissue donation for transplantation. METHODS Epidemiological, retrospective and cross-sectional study (2003-2011 and 2008-2012), which was performed using organ donation for transplants data in the state of Sao Paulo, Southeastern Brazil. Nine hospitals were evaluated (hospitals 1 to 9). Logistic regression was used to evaluate the differences in the number of brain death referrals and actual donors (dependent variables) after the professional specialist started work (independent variable) at the intra-hospital committee of organ and tissue donation for transplantation. To evaluate the hospital invoicing, the hourly wage of the doctor and registered nurse, according to the legislation of the Consolidation of Labor Laws, were calculated, as were the investment return and the time elapsed to do so. RESULTS Following the nursing specialist commencement on the committee, brain death referrals and the number of actual donors increased at hospital 2 (4.17 and 1.52, respectively). At hospital 7, the number of actual donors also increased from 0.005 to 1.54. In addition, after the nurse started working, hospital revenues increased by 190.0% (ranging 40.0% to 1.955%). The monthly cost for the nurse working 20 hours was US$397.97 while the doctor would cost US$3,526.67. The return on investment was 275% over the short term (0.36 years). CONCLUSIONS This paper showed that including a professional specialist in intra-hospital committees for organ and tissue donation for transplantation proved to be cost-effective. Further economic research in the area could contribute to the efficient public policy implementation of this organ and tissue harvesting model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The resource constrained project scheduling problem (RCPSP) is a difficult problem in combinatorial optimization for which extensive investigation has been devoted to the development of efficient algorithms. During the last couple of years many heuristic procedures have been developed for this problem, but still these procedures often fail in finding near-optimal solutions. This paper proposes a genetic algorithm for the resource constrained project scheduling problem. The chromosome representation of the problem is based on random keys. The schedule is constructed using a heuristic priority rule in which the priorities and delay times of the activities are defined by the genetic algorithm. The approach was tested on a set of standard problems taken from the literature and compared with other approaches. The computational results validate the effectiveness of the proposed algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

- The resource constrained project scheduling problem (RCPSP) is a difficult problem in combinatorial optimization for which extensive investigation has been devoted to the development of efficient algorithms. During the last couple of years many heuristic procedures have been developed for this problem, but still these procedures often fail in finding near-optimal solutions. This paper proposes a genetic algorithm for the resource constrained project scheduling problem. The chromosome representation of the problem is based on random keys. The schedule is constructed using a heuristic priority rule in which the priorities and delay times of the activities are defined by the genetic algorithm. The approach was tested on a set of standard problems taken from the literature and compared with other approaches. The computational results validate the effectiveness of the proposed algorithm

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a biased random-key genetic algorithm for the resource constrained project scheduling problem. The chromosome representation of the problem is based on random keys. Active schedules are constructed using a priority-rule heuristic in which the priorities of the activities are defined by the genetic algorithm. A forward-backward improvement procedure is applied to all solutions. The chromosomes supplied by the genetic algorithm are adjusted to reflect the solutions obtained by the improvement procedure. The heuristic is tested on a set of standard problems taken from the literature and compared with other approaches. The computational results validate the effectiveness of the proposed algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a methodology for applying scheduling algorithms using Monte Carlo simulation. The methodology is based on a decision support system (DSS). The proposed methodology combines a genetic algorithm with a new local search using Monte Carlo Method. The methodology is applied to the job shop scheduling problem (JSSP). The JSSP is a difficult problem in combinatorial optimization for which extensive investigation has been devoted to the development of efficient algorithms. The methodology is tested on a set of standard instances taken from the literature and compared with others. The computation results validate the effectiveness of the proposed methodology. The DSS developed can be utilized in a common industrial or construction environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a genetic algorithm for the multimode resource-constrained project scheduling problem (MRCPSP), in which multiple execution modes are available for each of the activities of the project. The objective function is the minimization of the construction project completion time. To solve the problem, is applied a two-level genetic algorithm, which makes use of two separate levels and extend the parameterized schedule generation scheme by introducing an improvement procedure. It is evaluated the quality of the schedule and present detailed comparative computational results for the MRCPSP, which reveal that this approach is a competitive algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolution of new technology and its increasing use, have for some years been making the existence of informal learning more and more transparent, especially among young and older adults in both Higher Education and workplace contexts. However, the nature of formal and non-formal, course-based, approaches to learning has made it hard to accommodate these informal processes satisfactorily, and although technology bring us near to the solution, it has not yet achieved. TRAILER project aims to address this problem by developing a tool for the management of competences and skills acquired through informal learning experiences, both from the perspective of the user and the institution or company. This paper describes the research and development main lines of this project.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada para obtenção do Grau de Doutor em Conservação e Restauro, especialidade Teoria, História e Técnicas, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mestrado em Engenharia Química - Ramo Optimização Energética na Indústria Química

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mestrado em Engenharia Química - Ramo Optimização Energética na Indústria Química

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este artigo apresenta uma nova abordagem (MM-GAV-FBI), aplicável ao problema da programação de projectos com restrições de recursos e vários modos de execução por actividade, problema conhecido na literatura anglo-saxónica por MRCPSP. Cada projecto tem um conjunto de actividades com precedências tecnológicas definidas e um conjunto de recursos limitados, sendo que cada actividade pode ter mais do que um modo de realização. A programação dos projectos é realizada com recurso a um esquema de geração de planos (do inglês Schedule Generation Scheme - SGS) integrado com uma metaheurística. A metaheurística é baseada no paradigma dos algoritmos genéticos. As prioridades das actividades são obtidas a partir de um algoritmo genético. A representação cromossómica utilizada baseia-se em chaves aleatórias. O SGS gera planos não-atrasados. Após a obtenção de uma solução é aplicada uma melhoria local. O objectivo da abordagem é encontrar o melhor plano (planning), ou seja, o plano que tenha a menor duração temporal possível, satisfazendo as precedências das actividades e as restrições de recursos. A abordagem proposta é testada num conjunto de problemas retirados da literatura da especialidade e os resultados computacionais são comparados com outras abordagens. Os resultados computacionais validam o bom desempenho da abordagem, não apenas em termos de qualidade da solução, mas também em termos de tempo útil.