832 resultados para Principal components
Resumo:
Recently, the term ‘food literacy’ has emerged in policy, research and practice to describe the collection of knowledge, skills and behaviours required to practically meet food needs. This presentation will described research undertaken to empirically define the term and propose its impact on nutrition
Resumo:
The fermentation characteristics of six specific types of the organic fraction of municipal solid waste (OFMSW) were examined, with an emphasis on properties that are needed when designing plug-flow type anaerobic bioreactors. More specifically, the decomposition patterns of a vegetable (cabbage), fruits (banana and citrus peels), fresh leaf litter of bamboo and teak leaves, and paper (newsprint) waste streams as feedstocks were studied. Individual OFMSW components were placed into nylon mesh bags and subjected to various fermentation periods (solids retention time, SRT) within the inlet of a functioning plug-flow biogas fermentor. These were removed at periodic intervals, and their composition was analyzed to monitor decomposition rates and changes in chemical composition. Components like cabbage waste, banana peels, and orange peels fermented rapidly both in a plug-flow biogas reactor (PFBR) as well as under a biological methane potential (BMP) assay, while other OFMSW components (leaf litter from bamboo and teak leaves and newsprint) fermented slowly with poor process stability and moderate biodegradation. For fruit and vegetable wastes (FVW), a rapid and efficient removal of pectins is the main cause of rapid disintegration of these feedstocks, which left behind very little compost forming residues (2–5%). Teak and bamboo leaves and newsprint decomposed only to 25–50% in 30 d. These results confirm the potential for volatile fatty acids accumulation in a PFBR’s inlet and suggest a modification of the inlet zone or operation of a PFBR with the above feedstocks.
Resumo:
Turbulent mixed convection flow and heat transfer in a shallow enclosure with and without partitions and with a series of block-like heat generating components is studied numerically for a range of Reynolds and Grashof numbers with a time-dependent formulation. The flow and temperature distributions are taken to be two-dimensional. Regions with the same velocity and temperature distributions can be identified assuming repeated placement of the blocks and fluid entry and exit openings at regular distances, neglecting the end wall effects. One half of such module is chosen as the computational domain taking into account the symmetry about the vertical centreline. The mixed convection inlet velocity is treated as the sum of forced and natural convection components, with the individual components delineated based on pressure drop across the enclosure. The Reynolds number is based on forced convection velocity. Turbulence computations are performed using the standard k– model and the Launder–Sharma low-Reynolds number k– model. The results show that higher Reynolds numbers tend to create a recirculation region of increasing strength in the core region and that the effect of buoyancy becomes insignificant beyond a Reynolds number of typically 5×105. The Euler number in turbulent flows is higher by about 30 per cent than that in the laminar regime. The dimensionless inlet velocity in pure natural convection varies as Gr1/3. Results are also presented for a number of quantities of interest such as the flow and temperature distributions, Nusselt number, pressure drop and the maximum dimensionless temperature in the block, along with correlations.
Resumo:
SUMMARY Seasonal conditions in the pre to post natal period and selected periods before and during wool growth were described using climatic measures and estimates of the quality and quantity of pasture on offer derived from a validated pasture production model (GRASP). The variation in greasy and clean fleece weight, yield, staple length, fibre diameter, neck and side wrinkle score of Merinos grazing Mitchell grass in north west Queensland was explained in terms of these pasture and climatic measures and animal characteristics such as reproductive status, age and skin area. Multiple regression equations predicting clean and greasy fleece weight from the proportion of days in the wool growth period that the green pool in the pasture was less than one kg/ha, the percentage utilisation of the pasture, age, reproductive status and skin area of the ewes explained 87% and 79% of the variation respectively. Equations with similar predictors explained 58-85% of the variation of the other components. The inclusion of pasture conditions in the pre to post natal period did not significantly improve the predictions of the animal’s later performance. 22nd Biennial Conference.
Resumo:
This paper proposes solutions to three issues pertaining to the estimation of finite mixture models with an unknown number of components: the non-identifiability induced by overfitting the number of components, the mixing limitations of standard Markov Chain Monte Carlo (MCMC) sampling techniques, and the related label switching problem. An overfitting approach is used to estimate the number of components in a finite mixture model via a Zmix algorithm. Zmix provides a bridge between multidimensional samplers and test based estimation methods, whereby priors are chosen to encourage extra groups to have weights approaching zero. MCMC sampling is made possible by the implementation of prior parallel tempering, an extension of parallel tempering. Zmix can accurately estimate the number of components, posterior parameter estimates and allocation probabilities given a sufficiently large sample size. The results will reflect uncertainty in the final model and will report the range of possible candidate models and their respective estimated probabilities from a single run. Label switching is resolved with a computationally light-weight method, Zswitch, developed for overfitted mixtures by exploiting the intuitiveness of allocation-based relabelling algorithms and the precision of label-invariant loss functions. Four simulation studies are included to illustrate Zmix and Zswitch, as well as three case studies from the literature. All methods are available as part of the R package Zmix, which can currently be applied to univariate Gaussian mixture models.
Resumo:
Multiphenotype genome-wide association studies (GWAS) may reveal pleiotropic genes, which would remain undetected using single phenotype analyses. Analysis of large pedigrees offers the added advantage of more accurately assessing trait heritability, which can help prioritise genetically influenced phenotypes for GWAS analysis. In this study we performed a principal component analysis (PCA), heritability (h2) estimation and pedigree-based GWAS of 37 cardiovascular disease -related phenotypes in 330 related individuals forming a large pedigree from the Norfolk Island genetic isolate. PCA revealed 13 components explaining >75% of the total variance. Nine components yielded statistically significant h2 values ranging from 0.22 to 0.54 (P<0.05). The most heritable component was loaded with 7 phenotypic measures reflecting metabolic and renal dysfunction. A GWAS of this composite phenotype revealed statistically significant associations for 3 adjacent SNPs on chromosome 1p22.2 (P<1x10-8). These SNPs form a 42kb haplotype block and explain 11% of the genetic variance for this renal function phenotype. Replication analysis of the tagging SNP (rs1396315) in an independent US cohort supports the association (P = 0.000011). Blood transcript analysis showed 35 genes were associated with rs1396315 (P<0.05). Gene set enrichment analysis of these genes revealed the most enriched pathway was purine metabolism (P = 0.0015). Overall, our findings provide convincing evidence for a major pleiotropic effect locus on chromosome 1p22.2 influencing risk of renal dysfunction via purine metabolism pathways in the Norfolk Island population. Further studies are now warranted to interrogate the functional relevance of this locus in terms of renal pathology and cardiovascular disease risk.
Resumo:
The sex pheromone of the red banded mango caterpillar, Deanolis sublimbalis (Lepidoptera: Crambidae), a serious pest of the mango Mangifera indica (Anacardiaceae) in India and Southeast Asia and a recent invader into northern Australia, has been identified. Three candidate compounds were identified from pheromone gland extracts of female moths, using gas chromatography (GC), GC-electroantennographic detection and GC-mass spectrometric analyses, in conjunction with dimethyldisulfide derivatization. Field bioassays established that both (Z)-11-hexadecenal (Z11-16:Ald) and (3Z,6Z,9Z)-tricosatriene (3Z,6Z,9Z-23:Hy) were required for attraction of male D. sublimbalis moths, and 1,000 μg of a 1:1 mix of Z11-16:Ald and 3Z,6Z,9Z-23:Hy was more attractive to male moths than caged virgin females. However, the binary blend was only attractive when the isomeric purity of the monounsaturated aldehyde was >99%, suggesting that the (E)-isomer was inhibitory. Although (Z)-11-hexadecen-1-ol (Z11-16:OH) was tentatively identified in gland extracts, the addition of this compound to the binary blend did not increase the numbers of moths captured. The pheromone can now be used in integrated pest management strategies.
Resumo:
Much interest has been expressed in the construct metacognition, the individual's knowledge and control of his own cognitive processes. Recent educational proposals have suggested the training of general metacognitive principles in schools. The exact nature of the construct has, however, remained vague. The aim of the present study was to provide some clarity. In a study of the metacognitive responses of 144 primary school children (aged 7‐11 years) four measures commonly used to assess metacognitive function were examined. First, the content of each measure was examined. Secondly, in an attempt to identify a metacognitive factor, commonality among the measures, both of developmental patterns and statistical relationship, was sought. Whilst a common pattern of development in the children's responses to the four measures was identified, factor analysis failed to provide evidence for a common metacognitive factor and unified construct.
Resumo:
We have mapped and identified DNA markers linked to morphology, yield, and yield components of lucerne, using a backcross population derived from winter-active parents. The high-yielding and recurrent parent, D, produced individual markers that accounted for up to 18% of total yield over 6 harvests, at Gatton, south-eastern Queensland. The same marker, AC/TT8, was consistently identified at each individual harvest, and in individual harvests accounted for up to 26% of the phenotypic variation for yield. This marker was located in linkage group 2 of the D map, and several other markers positively associated with yield were consistently identified in this linkage group. Similarly, markers negatively associated with yield were consistently identified in the W116 map, W116 being the low-yielding parent. Highly significant positive correlations were observed between total yield and yield for harvests 1-6, and between total yield and stem length, tiller number, leaf yield/plant, leaf yield/5 stems, stem yield/plant, and stem yield/5 stems. Highly significant QTL were located for all these characters as well as for leaf shape and pubescence.
Differential expression profiling of components associated with exoskeletal hardening in crustaceans
Resumo:
Background: Exoskeletal hardening in crustaceans can be attributed to mineralization and sclerotization of the organic matrix. Glycoproteins have been implicated in the calcification process of many matrices. Sclerotization, on the other hand, is catalysed by phenoloxidases, which also play a role in melanization and the immunological response in arthropods. Custom cDNA microarrays from Portunus pelagicus were used to identify genes possibly associated with the activation pathways involved in these processes. Results: Two genes potentially involved in the recognition of glycosylation, the C-type lectin receptor and the mannose-binding protein, were found to display molt cycle-related differential expression profiles. C-type lectin receptor up-regulation was found to coincide with periods associated with new uncalcified cuticle formation, while the up-regulation of mannose-binding protein occurred only in the post-molt stage, during which calcification takes place, implicating both in the regulation of calcification. Genes presumed to be involved in the phenoloxidase activation pathway that facilitates sclerotization also displayed molt cycle-related differential expression profiles. Members of the serine protease superfamily, trypsin-like and chymotrypsin-like, were up-regulated in the intermolt stage when compared to post-molt, while trypsin-like was also up-regulated in pre-molt compared to ecdysis. Additionally, up-regulation in pre- and intermolt stages was observed by transcripts encoding other phenoloxidase activators including the putative antibacterial protein carcinin-like, and clotting protein precursor-like. Furthermore, hemocyanin, itself with phenoloxidase activity, displayed an identical expression pattern to that of the phenoloxidase activators, i.e. up-regulation in pre- and intermolt. Conclusion: Cuticle hardening in crustaceans is a complex process that is precisely timed to occur in the post-molt stage of the molt cycle. We have identified differential expression patterns of several genes that are believed to be involved in biomineralization and sclerotization and propose possible regulatory mechanisms for these processes based on their expression profiles, such as the potential involvement of C-type lectin receptors and mannose binding protein in the regulation of calcification.
Resumo:
The traditional reductionist approach to science has a tendency to create 'islands of knowledge in a sea of ignorance', with a much stronger focus on analysis of scientific inputs rather than synthesis of socially relevant outcomes. This might be the principal reason why intended end users of climate information generally fail to embrace what the climate science community has to offer. The translation of climate information into real-life action requires 3 essential components: salience (the perceived relevance of the information), credibility (the perceived technical quality of the information) and legitimacy (the perceived objectivity of the process by which the information is shared). We explore each of these components using 3 case studies focused on dryland cropping in Australia, India and Brazil. In regards to 'salience' we discuss the challenge for climate science to be 'policy-relevant', using Australian drought policy as an example. In a village in southern India 'credibility' was gained through engagement between scientists and risk managers with the aim of building social capital, achieved only at high cost to science institutions. Finally, in Brazil we found that 'legitimacy' is a fragile, yet renewable resource that needs to be part of the package for successful climate applications; legitimacy can be easily eroded but is difficult to recover. We conclude that climate risk management requires holistic solutions derived from cross-disciplinary and participatory, user-oriented research. Approaches that combine climate, agroecological and socioeconomic models provide the scientific capabilities for establishment of 'borderless' institutions without disciplinary constraints. Such institutions could provide the necessary support and flexibility to deliver the social benefits of climate science across diverse contexts. Our case studies show that this type of solution is already being applied, and suggest that the climate science community attempt to address existing institutional constraints, which still impede climate risk management.
Resumo:
Polarization properties of Gaussian laser beams are analyzed in a manner consistent with the Maxwell equations, and expressions are developed for all components of the electric and magnetic field vectors in the beam. It is shown that the transverse nature of the free electromagnetic field demands a nonzero transverse cross-polarization component in addition to the well-known component of the field vectors along the beam axis. The strength of these components in relation to the strength of the principal polarization component is established. It is further shown that the integrated strengths of these components over a transverse plane are invariants of the propagation process. It is suggested that cross- polarization measurement using a null detector can serve as a new method for accurate determination of the center of Gaussian laser beams.
Resumo:
The basolateral amygdala (BLA) is a complex brain region associated with processing emotional states, such as fear, anxiety, and stress. Some aspects of these emotional states are driven by the network activity of synaptic connections, derived from both local circuitry and projections to the BLA from other regions. Although the synaptic physiology and general morphological characteristics are known for many individual cell types within the BLA, the combination of morphological, electrophysiological, and distribution of neurochemical GABAergic synapses in a three-dimensional neuronal arbor has not been reported for single neurons from this region. The aim of this study was to assess differences in morphological characteristics of BLA principal cells and interneurons, quantify the distribution of GABAergic neurochemical synapses within the entire neuronal arbor of each cell type, and determine whether GABAergic synaptic density correlates with electrophysiological recordings of inhibitory postsynaptic currents. We show that BLA principal neurons form complex dendritic arborizations, with proximal dendrites having fewer spines but higher densities of neurochemical GABAergic synapses compared with distal dendrites. Furthermore, we found that BLA interneurons exhibited reduced dendritic arbor lengths and spine densities but had significantly higher densities of putative GABAergic synapses compared with principal cells, which was correlated with an increased frequency of spontaneous inhibitory postsynaptic currents. The quantification of GABAergic connectivity, in combination with morphological and electrophysiological measurements of the BLA cell types, is the first step toward a greater understanding of how fear and stress lead to changes in morphology, local connectivity, and/or synaptic reorganization of the BLA.
Resumo:
Recirculating aquaculture systems have a unique anthropogenic-based soundscape which is characterized by the type of equipment utilized, the structural configuration of walls, tanks, equipment, the substrate the tanks are situated on and even the activities of the personnel operating the facility. The soundscape of recirculation facilities is inadequately understood and remains poorly characterized, although it is generally accepted that the dominant sounds found in such facilities are within the hearing range of fish. The objective of this study was to evaluate the soundscape in a recirculating aquaculture facility from an intra-tank perspective and determine how the soundscape is shaped by a range of characteristics within the facility. Sounds were recorded across an operating aquaculture facility including different tank designs. The sounds recorded fell within previously measured pressure level ranges for recirculating systems, with the highest maximum sound pressure level (SPL) recorded at 124 dB re 1 mu Pa-2/Hz (with an FFT bin width of 46.9 Hz, centered at 187.5 Hz). The soundscape within the tanks was stratified and positively correlated with depth, the highest sound pressure occurring at the base of the tanks. Each recording of the soundscape was dominated by a frequency component of 187.5 Hz (corresponding centre of the 4th 46.9 Hz FFT analysis bin) that produced the highest observed SPL Analysis of sound recordings revealed that this peak SPL was associated with the acoustic signature of the pump. The soundscape was also evaluated for impacts of tank hood position, time of day, transient sounds and airstone particle size types, all of which were found to appreciably influence sound levels and structure within the tank environment. This study further discusses the distinctiveness of the soundscape, how it is shaped by the various operating components and considers the aquaculture soundscape in relation to natural soundscapes found within aquatic tropical environments.
Resumo:
The cattle tick, Rhipicephalus (Boophilus) microplus, and the diseases it transmits pose a persistent threat to tropical beef production. Genetic selection of host resistance has become the method of choice for non-chemical control of cattle tick. Previous studies have suggested that larval stages are most susceptible to host resistance mechanisms. To gain insights into the molecular basis of host resistance that occurs during R. microplus attachment, we assessed the abundance of proteins (by isobaric tag for relative and absolute quantitation (iTRAQ) and Western blot analyses) and mRNAs (by quantitative reverse transcription PCR (qRT-PCR)) in skin adjacent to tick bite sites from high tick-resistant (HR) and low tick-resistant (LR) Belmont Red cattle following challenge with cattle tick. We showed substantially higher expression of the basal epidermal keratins KRT5 and KRT14, the lipid processing protein, lipocalin 9 (LCN9), the epidermal barrier catalysing enzyme transglutaminase 1 (TGM1), and the transcriptional regulator B lymphocyte-induced maturation protein 1 (Blimp1) in HR skin. Our data reveals the essential role of the epidermal permeability barrier in conferring greater resistance of cattle to tick infestation, and suggest that the physical structure of the epidermal layers of the skin may represent the first line of defence against ectoparasite invasion. Crown Copyright. © Australian Society for Parasitology Inc.