901 resultados para Predictive Intervals


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate key characteristics of Ca²⁺ puffs in deterministic and stochastic frameworks that all incorporate the cellular morphology of IP[subscript]3 receptor channel clusters. In a first step, we numerically study Ca²⁺ liberation in a three dimensional representation of a cluster environment with reaction-diffusion dynamics in both the cytosol and the lumen. These simulations reveal that Ca²⁺ concentrations at a releasing cluster range from 80 µM to 170 µM and equilibrate almost instantaneously on the time scale of the release duration. These highly elevated Ca²⁺ concentrations eliminate Ca²⁺ oscillations in a deterministic model of an IP[subscript]3R channel cluster at physiological parameter values as revealed by a linear stability analysis. The reason lies in the saturation of all feedback processes in the IP[subscript]3R gating dynamics, so that only fluctuations can restore experimentally observed Ca²⁺ oscillations. In this spirit, we derive master equations that allow us to analytically quantify the onset of Ca²⁺ puffs and hence the stochastic time scale of intracellular Ca²⁺ dynamics. Moving up the spatial scale, we suggest to formulate cellular dynamics in terms of waiting time distribution functions. This approach prevents the state space explosion that is typical for the description of cellular dynamics based on channel states and still contains information on molecular fluctuations. We illustrate this method by studying global Ca²⁺ oscillations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the rate of human papillomavirus (HPV) persistence, associated risk factors, and predictors of cytological alteration outcomes in a cohort of human immunodeficiency virus-infected pregnant women over an 18-month period. HPV was typed through L1 gene sequencing in cervical smears collected during gestation and at 12 months after delivery. Outcomes were defined as nonpersistence (clearance of the HPV in the 2nd sample), re-infection (detection of different types of HPV in the 2 samples), and type-specific HPV persistence (the same HPV type found in both samples). An unfavourable cytological outcome was considered when the second exam showed progression to squamous intraepithelial lesion or high squamous intraepithelial lesion. Ninety patients were studied. HPV DNA persistence occurred in 50% of the cases composed of type-specific persistence (30%) or re-infection (20%). A low CD4+ T-cell count at entry was a risk factor for type-specific, re-infection, or HPV DNA persistence. The odds ratio (OR) was almost three times higher in the type-specific group when compared with the re-infection group (OR = 2.8; 95% confidence interval: 0.43-22.79). Our findings show that bonafide (type-specific) HPV persistence is a stronger predictor for the development of cytological abnormalities, highlighting the need for HPV typing as opposed to HPV DNA testing in the clinical setting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Assessing the fit of a model is an important final step in any statistical analysis, but this is not straightforward when complex discrete response models are used. Cross validation and posterior predictions have been suggested as methods to aid model criticism. In this paper a comparison is made between four methods of model predictive assessment in the context of a three level logistic regression model for clinical mastitis in dairy cattle; cross validation, a prediction using the full posterior predictive distribution and two “mixed” predictive methods that incorporate higher level random effects simulated from the underlying model distribution. Cross validation is considered a gold standard method but is computationally intensive and thus a comparison is made between posterior predictive assessments and cross validation. The analyses revealed that mixed prediction methods produced results close to cross validation whilst the full posterior predictive assessment gave predictions that were over-optimistic (closer to the observed disease rates) compared with cross validation. A mixed prediction method that simulated random effects from both higher levels was best at identifying the outlying level two (farm-year) units of interest. It is concluded that this mixed prediction method, simulating random effects from both higher levels, is straightforward and may be of value in model criticism of multilevel logistic regression, a technique commonly used for animal health data with a hierarchical structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de Mestrado, Engenharia Electrónica e Telecomunicações, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genomic selection (GS) has been used to compute genomic estimated breeding values (GEBV) of individuals; however, it has only been applied to animal and major plant crops due to high costs. Besides, breeding and selection is performed at the family level in some crops. We aimed to study the implementation of genome-wide family selection (GWFS) in two loblolly pine (Pinus taeda L.) populations: i) the breeding population CCLONES composed of 63 families (5-20 individuals per family), phenotyped for four traits (stem diameter, stem rust susceptibility, tree stiffness and lignin content) and genotyped using an Illumina Infinium assay with 4740 polymorphic SNPs, and ii) a simulated population that reproduced the same pedigree as CCLONES, 5000 polymorphic loci and two traits (oligogenic and polygenic). In both populations, phenotypic and genotypic data was pooled at the family level in silico. Phenotypes were averaged across replicates for all the individuals and allele frequency was computed for each SNP. Marker effects were estimated at the individual (GEBV) and family (GEFV) levels with Bayes-B using the package BGLR in R and models were validated using 10-fold cross validations. Predicted ability, computed by correlating phenotypes with GEBV and GEFV, was always higher for GEFV in both populations, even after standardizing GEFV predictions to be comparable to GEBV. Results revealed great potential for using GWFS in breeding programs that select families, such as most outbreeding forage species. A significant drop in genotyping costs as one sample per family is needed would allow the application of GWFS in minor crops.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, the interest of the automotive market for hybrid vehicles has increased due to the more restrictive pollutants emissions legislation and to the necessity of decreasing the fossil fuel consumption, since such solution allows a consistent improvement of the vehicle global efficiency. The term hybridization regards the energy flow in the powertrain of a vehicle: a standard vehicle has, usually, only one energy source and one energy tank; instead, a hybrid vehicle has at least two energy sources. In most cases, the prime mover is an internal combustion engine (ICE) while the auxiliary energy source can be mechanical, electrical, pneumatic or hydraulic. It is expected from the control unit of a hybrid vehicle the use of the ICE in high efficiency working zones and to shut it down when it is more convenient, while using the EMG at partial loads and as a fast torque response during transients. However, the battery state of charge may represent a limitation for such a strategy. That’s the reason why, in most cases, energy management strategies are based on the State Of Charge, or SOC, control. Several studies have been conducted on this topic and many different approaches have been illustrated. The purpose of this dissertation is to develop an online (usable on-board) control strategy in which the operating modes are defined using an instantaneous optimization method that minimizes the equivalent fuel consumption of a hybrid electric vehicle. The equivalent fuel consumption is calculated by taking into account the total energy used by the hybrid powertrain during the propulsion phases. The first section presents the hybrid vehicles characteristics. The second chapter describes the global model, with a particular focus on the energy management strategies usable for the supervisory control of such a powertrain. The third chapter shows the performance of the implemented controller on a NEDC cycle compared with the one obtained with the original control strategy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Model predictive control (MPC) has often been referred to in literature as a potential method for more efficient control of building heating systems. Though a significant performance improvement can be achieved with an MPC strategy, the complexity introduced to the commissioning of the system is often prohibitive. Models are required which can capture the thermodynamic properties of the building with sufficient accuracy for meaningful predictions to be made. Furthermore, a large number of tuning weights may need to be determined to achieve a desired performance. For MPC to become a practicable alternative, these issues must be addressed. Acknowledging the impact of the external environment as well as the interaction of occupants on the thermal behaviour of the building, in this work, techniques have been developed for deriving building models from data in which large, unmeasured disturbances are present. A spatio-temporal filtering process was introduced to determine estimates of the disturbances from measured data, which were then incorporated with metaheuristic search techniques to derive high-order simulation models, capable of replicating the thermal dynamics of a building. While a high-order simulation model allowed for control strategies to be analysed and compared, low-order models were required for use within the MPC strategy itself. The disturbance estimation techniques were adapted for use with system-identification methods to derive such models. MPC formulations were then derived to enable a more straightforward commissioning process and implemented in a validated simulation platform. A prioritised-objective strategy was developed which allowed for the tuning parameters typically associated with an MPC cost function to be omitted from the formulation by separation of the conflicting requirements of comfort satisfaction and energy reduction within a lexicographic framework. The improved ability of the formulation to be set-up and reconfigured in faulted conditions was shown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Allergic Rhinitis and its Impact on Asthma (ARIA) initiative commenced during a World Health Organization workshop in 1999. The initial goals were (1) to propose a new allergic rhinitis classification, (2) to promote the concept of multi-morbidity in asthma and rhinitis and (3) to develop guidelines with all stakeholders that could be used globally for all countries and populations. ARIA—disseminated and implemented in over 70 countries globally—is now focusing on the implementation of emerging technologies for individualized and predictive medicine. MASK [MACVIA (Contre les Maladies Chroniques pour un Vieillissement Actif)-ARIA Sentinel NetworK] uses mobile technology to develop care pathways for the management of rhinitis and asthma by a multi-disciplinary group and by patients themselves. An app (Android and iOS) is available in 20 countries and 15 languages. It uses a visual analogue scale to assess symptom control and work productivity as well as a clinical decision support system. It is associated with an inter-operable tablet for physicians and other health care professionals. The scaling up strategy uses the recommendations of the European Innovation Partnership on Active and Healthy Ageing. The aim of the novel ARIA approach is to provide an active and healthy life to rhinitis sufferers, whatever their age, sex or socio-economic status, in order to reduce health and social inequalities incurred by the disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Plant-soil interaction is central to human food production and ecosystem function. Thus, it is essential to not only understand, but also to develop predictive mathematical models which can be used to assess how climate and soil management practices will affect these interactions. Scope In this paper we review the current developments in structural and chemical imaging of rhizosphere processes within the context of multiscale mathematical image based modeling. We outline areas that need more research and areas which would benefit from more detailed understanding. Conclusions We conclude that the combination of structural and chemical imaging with modeling is an incredibly powerful tool which is fundamental for understanding how plant roots interact with soil. We emphasize the need for more researchers to be attracted to this area that is so fertile for future discoveries. Finally, model building must go hand in hand with experiments. In particular, there is a real need to integrate rhizosphere structural and chemical imaging with modeling for better understanding of the rhizosphere processes leading to models which explicitly account for pore scale processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use asymptotic linearity to derive confidence intervals for large noncentrality parameters. These results enable us to measure relevance of effects and interactions in multifactors models when we get highly statistically significant the values of F tests statistics. We show how to use our approach by considering two sets of data as application examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Covariant Spectator Theory (CST) is used to calculate the mass spectrum and vertex functions of heavy–light and heavy mesons in Minkowski space. The covariant kernel contains Lorentz scalar, pseudoscalar, and vector contributions. The numerical calculations are performed in momentum space, where special care is taken to treat the strong singularities present in the confining kernel. The observed meson spectrum is very well reproduced after fitting a small number of model parameters. Remarkably, a fit to a few pseudoscalar meson states only, which are insensitive to spin–orbit and tensor forces and do not allow to separate the spin–spin from the central interaction, leads to essentially the same model parameters as a more general fit. This demonstrates that the covariance of the chosen interaction kernel is responsible for the very accurate prediction of the spin-dependent quark–antiquark interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Espécies forrageiras adaptadas às condições semiáridas são uma alternativa para reduzir os impactos negativos na cadeia produtiva de ruminantes da região Nordeste brasileira devido à sazonalidade na oferta de forragem, além de reduzir custo com o fornecimento de alimentos concentrados. Dentre as espécies, a vagem de algaroba (Prosopis juliflora SW D.C.) e palma forrageira (Opuntia e Nopalea) ganham destaque por tolerarem o déficit hídrico e produzirem em períodos onde a oferta de forragem está reduzida, além de apresentam bom valor nutricional e serem bem aceitas pelos animais. Porém, devido à variação na sua composição, seu uso na alimentação animal exige o conhecimento profundo da sua composição para a elaboração de dietas balanceadas. No entanto, devido ao custo e tempo para análise, os produtores não fazem uso da prática de análise da composição químico-bromatológica dos alimentos. Por isto, a espectroscopia de reflectância no infravermelho próximo (NIRS) representa uma importante alternativa aos métodos tradicionais. Objetivou-se com este estudo desenvolver e validar modelos de predição da composição bromatológica de vagem de algaroba e palma forrageira baseados em espectroscopia NIRS, escaneadas em dois modelos de equipamentos e com diferentes processamentos da amostra. Foram coletadas amostras de vagem de algaroba nos estados do Ceará, Bahia, Paraíba e Pernambuco, e amostras de palma forrageira nos estados do Ceará, Paraíba e Pernambuco, frescas (in natura) ou pré-secas e moídas. Para obtenção dos espectros utilizaram-se dois equipamentos NIR, Perten DA 7250 e FOSS 5000. Inicialmente os alimentos foram escaneados in natura em aparelho do modelo Perten, e, com o auxílio do software The Unscrambler 10.2 foi selecionado um grupo de amostras para o banco de calibração. As amostras selecionadas foram secas e moídas, e escaneadas novamente em equipamentos Perten e FOSS. Os valores dos parâmetros de referência foram obtidos por meio de metodologias tradicionalmente aplicadas em laboratório de nutrição animal para matéria seca (MS), matéria mineral (MM), matéria orgânica (MO), proteína bruta (PB), estrato etéreo (EE), fibra solúvel em detergente neutro (FDN), fibra solúvel em detergente ácido (FDA), hemicelulose (HEM) e digestibilidade in vitro da matéria seca (DIVMS). O desempenho dos modelos foi avaliado de acordo com os erros médios de calibração (RMSEC) e validação (RMSECV), coeficiente de determinação (R2 ) e da relação de desempenho de desvio dos modelos (RPD). A análise exploratória dos dados, por meio de tratamentos espectrais e análise de componentes principais (PCA), demonstraram que os bancos de dados eram similares entre si, dando segurança de desenvolver os modelos com todas as amostras selecionadas em um único modelo para cada alimento, algaroba e palma. Na avaliação dos resultados de referência, observou-se que a variação dos resultados para cada parâmetro corroboraram com os descritos na literatura. No desempenho dos modelos, aqueles desenvolvidos com pré-processamento da amostra (pré-secagem e moagem) se mostraram mais robustos do que aqueles construídos com amostras in natura. O aparelho NIRS Perten apresentou desempenho semelhante ao equipamento FOSS, apesar desse último cobrir uma faixa espectral maior e com intervalos de leituras menores. A técnica NIR, associada ao método de calibração multivariada de regressão por meio de quadrados mínimos (PLS), mostrou-se confiável para prever a composição químico-bromatológica de vagem de algaroba e da palma forrageira. Abstract: Forage species adapted to semi-arid conditions are an alternative to reduce the negative impacts in the feed supply for ruminants in the Brazilian Northeast region, due to seasonality in forage availability, as well as in the reducing of cost by providing concentrated feedstuffs. Among the species, mesquite pods (Prosopis juliflora SW DC) and spineless cactus (Opuntia and Nopalea) are highlighted for tolerating the drought and producion in periods where the forage is scarce, and have high nutritional value and also are well accepted by the animals. However, its use in animal diets requires a knowledge about its composition to prepare balanced diets. However, farmers usually do not use feed composition analysis, because their high cost and time-consuming. Thus, the Near Infrared Reflectance Spectroscopy in the (NIRS) is an important alternative to traditional methods. The objective of this study to develop and validate predictive models of the chemical composition of mesquite pods and spineless cactus-based NIRS spectroscopy, scanned in two different spectrometers and sample processing. Mesquite pods samples were collected in the states of Ceará, Bahia, Paraiba and Pernambuco, and samples of forage cactus in the states of Ceará, Paraíba and Pernambuco. In order to obtain the spectra, it was used two NIR equipment: Perten DA 7250 and FOSS 5000. sSpectra of samples were initially obtained fresh (as received) using Perten instrument, and with The Unscrambler software 10.2, a group of subsamples was selected to model development, keeping out redundant ones. The selected samples were dried and ground, and scanned again in both Perten and FOSS instruments. The values of the reference analysis were obtained by methods traditionally applied in animal nutrition laboratory to dry matter (DM), mineral matter (MM), organic matter (OM), crude protein (CP), ether extract (EE), soluble neutral detergent fiber (NDF), soluble acid detergent fiber (ADF), hemicellulose ( HEM) and in vitro digestibility of dry matter (DIVDM). The performance of the models was evaluated according to the Root Mean Square Error of Calibration (RMSEC) and cross-validation (RMSECV), coefficient of determination (R2 ) and the deviation of Ratio of performance Deviation of the models (RPD). Exploratory data analysis through spectral treatments and principal component analysis (PCA), showed that the databases were similar to each other, and may be treated asa single model for each feed - mesquite pods and cactus. Evaluating the reference results, it was observed that the variation were similar to those reported in the literature. Comparing the preprocessing of samples, the performance ofthose developed with preprocessing (dried and ground) of the sample were more robust than those built with fresh samples. The NIRS Perten device performance similar to FOSS equipment, although the latter cover a larger spectral range and with lower readings intervals. NIR technology associate do multivariate techniques is reliable to predict the bromatological composition of mesquite pods and cactus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Musical tension is what drives our emotional experience in music listening. However, the specific role of the musical elements involved in tension-resolution perception remains largely unclear. This dissertation aims to advance the understanding of tension perception dynamics related to sensory consonance-dissonance. The first experiment aimed to design and validate a new crossmodal proprioceptive device for tension rating that overcomes some of the limitations of known tools. As a result, a psychophysical equation for the matching of physical force and psychological force was presented. The same tool was subsequently used in the second and third experiments to collect ratings of perceived tension and movement in harmonic musical intervals and standard noises. Besides, a visual analog scale (VAS) was used to allow a comparison of these two methods. The results confirmed the close relationship between sensory dissonance and perceived tension. Moreover, stimuli in the higher pitch register were perceived as more tense, confirming the primary role of pitch as a mediator of tension. The comparison between ratings obtained with the proprioceptive device and the VAS highlighted the tendency to give higher tension ratings using the VAS compared to the proprioceptive device. In the last experiment, brain electrical activity was recorded during the presentation of short tension-resolution patterns created using the most tense (perfect unison, fourth, and fifth) and the least tense harmonic intervals (augmented fourth, minor second, and inverted major seventh) to understand how consonance-dissonance can convey meaningful information on perceived tension-resolution. Results showed overall larger effects during the ‘resolution’ condition compare to the ‘tension induction’ condition, indicating that the resolution of harmonic instability towards a state of stability may be more salient than its opposite. A late positive component (LPC) was elicited, possibly reflecting deeper processing of tension-related meaning within a minimal harmonic context.