Confidence intervals for large non- centrality parameter


Autoria(s): Inácio, S.; Oliveira, M.; Mexia, J.T.
Contribuinte(s)

Zmyślony, R.

Data(s)

09/01/2017

09/01/2017

02/05/2015

Resumo

We use asymptotic linearity to derive confidence intervals for large noncentrality parameters. These results enable us to measure relevance of effects and interactions in multifactors models when we get highly statistically significant the values of F tests statistics. We show how to use our approach by considering two sets of data as application examples.

Identificador

Inácio, S. T., Oliveira, M. M., Mexia, J.T. 2015. Confidence intervals for large non-centrality parameter. Discussiones Mathematicae Probability and Statistics 35.45–56 doi:10.7151/dmps.1175. ISSN 1509-9423,ISSN 2084-0381.

2084-0381

http://hdl.handle.net/10174/19621

S.TimoteoInacio@brighton.ac.uk

mmo@uevora.pt

jtm@fct.unl.pt

336

doi:10.7151/dmps.1175

Idioma(s)

eng

Publicador

Discussiones Mathematicae Probability and Statistics

Direitos

restrictedAccess

Palavras-Chave #asymptotic linearity #non-centrality parameters #highly significant F tests #measure relevance
Tipo

article