931 resultados para Point mutations and drug resistance
Resumo:
Human immunodeficiency virus type 1 (HIV-1) variants resistant to protease (PR) and reverse transcriptase (RT) inhibitors may display impaired infectivity and replication capacity. The individual contributions of mutated HIV-1 PR and RT to infectivity, replication, RT activity, and protein maturation (herein referred to as "fitness") in recombinant viruses were investigated by separately cloning PR, RT, and PR-RT cassettes from drug-resistant mutant viral isolates into the wild-type NL4-3 background. Both mutant PR and RT contributed to measurable deficits in fitness of viral constructs. In peripheral blood mononuclear cells, replication rates (means +/- standard deviations) of RT recombinants were 72.5% +/- 27.3% and replication rates of PR recombinants were 60.5% +/- 33.6% of the rates of NL4-3. PR mutant deficits were enhanced in CEM T cells, with relative replication rates of PR recombinants decreasing to 15.8% +/- 23.5% of NL4-3 replication rates. Cloning of the cognate RT improved fitness of some PR mutant clones. For a multidrug-resistant virus transmitted through sexual contact, RT constructs displayed a marked infectivity and replication deficit and diminished packaging of Pol proteins (RT content in virions diminished by 56.3% +/- 10.7%, and integrase content diminished by 23.3% +/- 18.4%), a novel mechanism for a decreased-fitness phenotype. Despite the identified impairment of recombinant clones, fitness of two of the three drug-resistant isolates was comparable to that of wild-type, susceptible viruses, suggestive of extensive compensation by genomic regions away from PR and RT. Only limited reversion of mutated positions to wild-type amino acids was observed for the native isolates over 100 viral replication cycles in the absence of drug selective pressure. These data underscore the complex relationship between PR and RT adaptive changes and viral evolution in antiretroviral drug-resistant HIV-1.
Resumo:
OBJECTIVE: Familial cold urticaria (FCU) and Muckle-Wells syndrome (MWS) are dominantly inherited autoinflammatory disorders that cause rashes, fever, arthralgia, and in some subjects, AA amyloidosis, and have been mapped to chromosome 1q44. Sensorineural deafness in MWS, and provocation of symptoms by cold in FCU, are distinctive features. This study was undertaken to characterize the genetic basis of FCU, MWS, and an overlapping disorder in French Canadian, British, and Indian families, respectively. METHODS: Mutations in the candidate gene NALP3, which has also been named CIAS1 and PYPAF1, were sought in the study families, in a British/Spanish patient with apparent sporadic MWS, and in matched population controls. Identified variants were sought in 50 European subjects with uncharacterized, apparently sporadic periodic fever syndromes, 48 subjects with rheumatoid arthritis (RA), and 19 subjects with juvenile idiopathic arthritis (JIA). RESULTS: Point mutations, encoding putative protein variants R262W and L307P, were present in all affected members of the Indian and French Canadian families, respectively, but not in controls. The R262W variant was also present in the subject with sporadic MWS. The V200M variant was present in all affected members of the British family with MWS, in 2 of the 50 subjects with uncharacterized periodic fevers, and in 1 of 130 Caucasian and 2 of 48 Indian healthy controls. No mutations were identified among the subjects with RA or JIA. CONCLUSION: These findings confirm that mutations in the NALP3/CIAS1/PYPAF1 gene are associated with FCU and MWS, and that disease severity and clinical features may differ substantially within and between families. Analysis of this gene will improve classification of patients with inherited or apparently sporadic periodic fever syndromes.
Resumo:
Prostate cancer is the most common carcinoma in the male population. In its initial stage, the disease is androgen-dependent and responds therapeutically to androgen deprivation treatment but it usually progresses after a few years to an androgen-independent phase that is refractory to hormonal manipulations. The proteasome is a multi-unit protease system that regulates the abundance and function of a significant number of cell proteins, and its inhibition results in cancer cell growth inhibition and apoptosis and is already exploited in the clinic with the use of proteasome inhibitor bortezomib in multiple myeloma. In order to be recognized by the proteasome, a target protein needs to be linked to a chain of the small protein ubiquitin. In this paper, we review the role of ubiquitin-proteasome system (UPS) in androgen receptor-dependent transcription as well as in the castration resistant stage of the disease, and we discuss therapeutic opportunities that UPS inhibition offers in prostate cancer.
Resumo:
Purpose of review Tyrosine kinase inhibitors (TKIs), such as imatinib and sunitinib, have changed the outcome of patients with gastrointestinal stromal tumor (GIST) and prolonged survival by many-fold. Unfortunately, treatment failure and tumor progression seem inevitable over time and constitute an unresolved clinical challenge. This article reviews current efforts to overcome drug resistance and progression. Recent findings The major mechanism of resistance toward imatinib and sunitinib is the development of secondary resistance mutations in the kinase domain of KIT. Recent efforts aim at inhibitors with increased activity against resistance mutations or a broader spectrum of activity. Other strategies include indirect KIT inhibition by modulating KIT chaperone proteins or inhibition of KIT-dependent and independent signaling pathways. Summary dThe rapid improvement of our understanding of GIST biology as well as resistance mechanisms towards imatinib and sunitinib will greatly facilitate the development of novel treatment strategies. This article summarizes the results of recently reported third and fourth-line clinical trials in patients with resistant GIST and reviews data of important proof-of-concept studies.
Resumo:
The α(1b)-adrenergic receptor (AR) was, after rhodopsin, the first G protein-coupled receptor (GPCR) in which point mutations were shown to trigger constitutive (agonist-independent) activity. Constitutively activating mutations have been found in other AR subtypes as well as in several GPCRs. This chapter briefly summarizes the main findings on constitutively active mutants of the α(1a)- and α(1b)-AR subtypes and the methods used to predict activating mutations, to measure constitutive activity of Gq-coupled receptors and to investigate inverse agonism. In addition, it highlights the implications of studies on constitutively active AR mutants on elucidating the molecular mechanisms of receptor activation and drug action.
Resumo:
Cefotaxime, given in two doses (each 100 mg/kg of body weight), produced a good bactericidal activity (-0.47 Deltalog(10) CFU/ml. h) which was comparable to that of levofloxacin (-0.49 Deltalog(10) CFU/ml. h) against a penicillin-resistant pneumococcal strain WB4 in experimental meningitis. Cefotaxime combined with levofloxacin acted synergistically (-1.04 Deltalog(10) CFU/ml. h). Synergy between cefotaxime and levofloxacin was also demonstrated in vitro in time killing assays and with the checkerboard method for two penicillin-resistant strains (WB4 and KR4). Using in vitro cycling experiments, the addition of cefotaxime in sub-MIC concentrations (one-eighth of the MIC) drastically reduced levofloxacin-induced resistance in the same two strains (64-fold increase of the MIC of levofloxacin after 12 cycles versus 2-fold increase of the MIC of levofloxacin combined with cefotaxime). Mutations detected in the genes encoding topoisomerase IV (parC and parE) and gyrase (gyrA and gyrB) confirmed the levofloxacin-induced resistance in both strains. Addition of cefotaxime in low doses was able to suppress levofloxacin-induced resistance.
Resumo:
This is the fourth annual report to the EMCDDA from the Norwegian Institute for Alcohol and Drug Research (SIRUS) on the drugs situation in Norway. The report has been drawn up in accordance with the new reporting guidelines introduced by the EMCDDA this year. We have endeavoured to follow these as consistently as possible, with the main focus on “new developments” and substantial changes in epidemiology, legislation and organisation. To allow readers to obtain more background information the report contains a number of references to the national report for 2003, and occasional references to the report for 2002.This resource was contributed by The National Documentation Centre on Drug Use.
Resumo:
This is a 2006 national report to the EMCDDA, using 2005 data. It is compiled by the Reitox national focal point and covers epidemiology, policing, strategy, drugs markets, drug-related infectious diseases, drug-related death and problem drug use in Norway.This resource was contributed by The National Documentation Centre on Drug Use.
Resumo:
A study was carried out to compare the performance of a commercial method (MGIT) and four inexpensive drug susceptibility methods: nitrate reductase assay (NRA), microscopic observation drug susceptibility (MODS) assay, MTT test, and broth microdilution method (BMM). A total of 64 clinical isolates of Mycobacterium tuberculosis were studied. The Lowenstein-Jensen proportion method (PM) was used as gold standard. MGIT, NRA, MODS, and MTT results were available on an average of less than 10 days, whereas BMM results could be reported in about 20 days. Most of the evaluated tests showed excellent performance for isoniazid and rifampicin, with sensitivity and specificity values > 90%. With most of the assays, sensitivity for ethambutol was low (62-87%) whereas for streptomycin, sensitivity values ranged from 84 to 100%; NRA-discrepancies were associated with cultures with a low proportion of EMB-resistant organisms while most discrepancies with quantitative tests (MMT and BMM) were seen with isolates whose minimal inhibitory concentrations fell close the cutoff. MGIT is reliable but still expensive. NRA is the most inexpensive and easiest method to perform without changing the organization of the routine PM laboratory performance. While MODS, MTT, and BMM, have the disadvantage from the point of view of biosafety, they offer the possibility of detecting partial resistant strains. This study shows a very good level of agreement of the four low-cost methods compared to the PM for rapid detection of isoniazid, rifampicin and streptomycin resistance (Kappa values > 0.8); more standardization is needed for ethambutol.
Resumo:
Mutations in the rpoB locus confer conformational changes leading to defective binding of rifampin (RIF) to rpoB and consequently resistance in Mycobacterium tuberculosis. Polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) was established as a rapid screening test for the detection of mutations in the rpoB gene, and direct sequencing has been unambiguously applied to characterize mutations. A total of 37 of Iranian isolates of M. tuberculosis, 16 sensitive and 21 resistant to RIF, were used in this study. A 193-bp region of the rpoB gene was amplified and PCR-SSCP patterns were determined by electrophoresis in 10% acrylamide gel and silver staining. Also, 21 samples of 193-bp rpoB amplicons with different PCR-SSCP patterns from RIFr and 10 from RIFs were sequenced. Seven distinguishable PCR-SSCP patterns were recognized in the 21 Iranian RIFr strains, while 15 out of 16 RIFs isolates demonstrated PCR-SSCP banding patterns similar to that of sensitive standard strain H37Rv. However one of the sensitive isolates demonstrated a different pattern. There were seen six different mutations in the amplified region of rpoB gene: codon 516(GAC/GTC), 523(GGG/GGT), 526(CAC/TAC), 531(TCG/TTG), 511(CTG/TTG), and 512(AGC/TCG). This study demonstrated the high specificity (93.8%) and sensitivity (95.2%) of PCR-SSCP method for detection of mutation in rpoB gene; 85.7% of RIFr strains showed a single mutation and 14.3% had no mutations. Three strains showed mutations caused polymorphism. Our data support the common notion that rifampin resistance genotypes are generally present mutations in codons 531 and 526, most frequently found in M. tuberculosis populations regardless of geographic origin.
Resumo:
Measuring antibiotic-induced killing relies on time-consuming biological tests. The firefly luciferase gene (luc) was successfully used as a reporter gene to assess antibiotic efficacy rapidly in slow-growing Mycobacterium tuberculosis. We tested whether luc expression could also provide a rapid evaluation of bactericidal drugs in Streptococcus gordonii. The suicide vectors pFW5luc and a modified version of pJDC9 carrying a promoterless luc gene were used to construct transcriptional-fusion mutants. One mutant susceptible to penicillin-induced killing (LMI2) and three penicillin-tolerant derivatives (LMI103, LMI104, and LMI105) producing luciferase under independent streptococcal promoters were tested. The correlation between antibiotic-induced killing and luminescence was determined with mechanistically unrelated drugs. Chloramphenicol (20 times the MIC) inhibited bacterial growth. In parallel, luciferase stopped increasing and remained stable, as determined by luminescence and Western blots. Ciprofloxacin (200 times the MIC) rapidly killed 1.5 log10 CFU/ml in 2-4 hr. Luminescence decreased simultaneously by 10-fold. In contrast, penicillin (200 times the MIC) gave discordant results. Although killing was slow (< or = 0.5 log10 CFU/ml in 2 hr), luminescence dropped abruptly by 50-100-times in the same time. Inactivating penicillin with penicillinase restored luminescence, irrespective of viable counts. This was not due to altered luciferase expression or stability, suggesting some kind of post-translational modification. Luciferase shares homology with aminoacyl-tRNA synthetase and acyl-CoA ligase, which might be regulated by macromolecule synthesis and hence affected in penicillin-inhibited cells. Because of resemblance, luciferase might be down-regulated simultaneously. Luminescence cannot be universally used to predict antibiotic-induced killing. Thus, introducing reporter enzymes sharing mechanistic similarities with normal metabolic reactions might reveal other effects than those expected.
Resumo:
BACKGROUND: The accumulation of mutations after long-lasting exposure to a failing combination antiretroviral therapy (cART) is problematic and severely reduces the options for further successful treatments. METHODS: We studied patients from the Swiss HIV Cohort Study who failed cART with nucleoside reverse transcriptase inhibitors (NRTIs) and either a ritonavir-boosted PI (PI/r) or a non-nucleoside reverse transcriptase inhibitor (NNRTI). The loss of genotypic activity <3, 3-6, >6 months after virological failure was analyzed with Stanford algorithm. Risk factors associated with early emergence of drug resistance mutations (<6 months after failure) were identified with multivariable logistic regression. RESULTS: Ninety-nine genotypic resistance tests from PI/r-treated and 129 from NNRTI-treated patients were analyzed. The risk of losing the activity of ≥1 NRTIs was lower among PI/r- compared to NNRTI-treated individuals <3, 3-6, and >6 months after failure: 8.8% vs. 38.2% (p = 0.009), 7.1% vs. 46.9% (p<0.001) and 18.9% vs. 60.9% (p<0.001). The percentages of patients who have lost PI/r activity were 2.9%, 3.6% and 5.4% <3, 3-6, >6 months after failure compared to 41.2%, 49.0% and 63.0% of those who have lost NNRTI activity (all p<0.001). The risk to accumulate an early NRTI mutation was strongly associated with NNRTI-containing cART (adjusted odds ratio: 13.3 (95% CI: 4.1-42.8), p<0.001). CONCLUSIONS: The loss of activity of PIs and NRTIs was low among patients treated with PI/r, even after long-lasting exposure to a failing cART. Thus, more options remain for second-line therapy. This finding is potentially of high relevance, in particular for settings with poor or lacking virological monitoring.
Resumo:
This study aimed to analyze human immunodeficiency virus (HIV) mutation profiles related to antiretroviral resistance following therapeutic failure, and the distribution of hiv subtypes in the Northeast Region of Brazil. A total of 576 blood samples from AIDS patients presenting therapeutic failure between 2002 and 2004 were analyzed. The genotyping kit viroSeq® was used to perform viral amplification in order to identify mutations related to hiv pol gene resistance. An index of 91.1% of the patients presented mutations for nucleoside reverse transcriptase inhibitors (nrti), 58.7% for non-nucleoside reverse transcriptase inhibitors (nnrti), and 94.8% for protease inhibitors (pi). The most prevalent mutations were 184V and 215E for nrti, 103N and 190A for nnrti. Most mutations associated with PIs were secondary, but significant frequencies were observed in codons 90 (25.2%), 82 (21.1%), and 30 (16.2%). The resistance index to one class of antiretrovirals was 14%, to two classes of antiretrovirals 61%, and to three classes 18.9%. Subtype B was the most prevalent (82.4%) followed by subtype F (11.8%). The prevalence of mutations related to nrti and nnrti was the same in the two subtypes, but codon analysis related to PI showed a higher frequency of mutations in codon 63 in subtype B and in codon 36 in subtype F. The present study showed that there was a high frequency of primary mutations, which offered resistance to nrti and nnrti. Monitoring patients with treatment failure is an important tool for aiding physicians in rescue therapy.
Resumo:
Mutations in the katG gene have been identified and correlated with isoniazid (INH) resistance in Mycobacterium tuberculosis isolates. The mutation AGC→ACC (Ser→Thr) at katG315 has been reported to be the most frequent and is associated with transmission and multidrug resistance. Rapid detection of this mutation could therefore improve the choice of an adequate anti-tuberculosis regimen, the epidemiological monitoring of INH resistance and, possibly, the tracking of transmission of resistant strains. An in house reverse hybridisation assay was designed in our laboratory and evaluated with 180 isolates of M. tuberculosis. It could successfully characterise the katG315 mutation in 100% of the samples as compared to DNA sequencing. The test is efficient and is a promising alternative for the rapid identification of INH resistance in regions with a high prevalence of katG315 mutants.
Resumo:
The influence of qnrA1 on the development of quinolone resistance in Enterobacteriaceae was evaluated by using the mutant prevention concentration parameter. The expression of qnrA1 considerably increased the mutant prevention concentration compared to strains without this gene. In the presence of qnrA1, mutations in gyrA and parC genes were easily selected to produce high levels of quinolone resistance.