927 resultados para Partial Differential Equations with “Maxima”


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Let π : FM ! M be the bundle of linear frames of a manifold M. A basis Lijk , j < k, of diffeomorphism invariant Lagrangians on J1 (FM) was determined in [J. Muñoz Masqué, M. E. Rosado, Invariant variational problems on linear frame bundles, J. Phys. A35 (2002) 2013-2036]. The notion of a characteristic hypersurface for an arbitrary first-order PDE system on an ar- bitrary bred manifold π : P → M, is introduced and for the systems dened by the Euler-Lagrange equations of Lijk every hypersurface is shown to be characteristic. The Euler-Lagrange equations of the natural basis of Lagrangian densities Lijk on the bundle of linear frames of a manifold M which are invariant under diffeomorphisms, are shown to be an underdetermined PDEs systems such that every hypersurface of M is characteristic for such equations. This explains why these systems cannot be written in the Cauchy-Kowaleska form, although they are known to be formally integrable by using the tools of geometric theory of partial differential equations, see [J. Muñoz Masqué, M. E. Rosado, Integrability of the eld equations of invariant variational problems on linear frame bundles, J. Geom. Phys. 49 (2004), 119-155]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the classification up to a Möbius transformation of real linearizable and integrable partial difference equations with dispersion defined on a square lattice by the multiscale reduction around their harmonic solution. We show that the A1, A2, and A3 linearizability and integrability conditions constrain the number of parameters in the equation, but these conditions are insufficient for a complete characterization of the subclass of multilinear equations on a square lattice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

he simulation of complex LoC (Lab-on-a-Chip) devices is a process that requires solving computationally expensive partial differential equations. An interesting alternative uses artificial neural networks for creating computationally feasible models based on MOR techniques. This paper proposes an approach that uses artificial neural networks for designing LoC components considering the artificial neural network topology as an isomorphism of the LoC device topology. The parameters of the trained neural networks are based on equations for modeling microfluidic circuits, analogous to electronic circuits. The neural networks have been trained to behave like AND, OR, Inverter gates. The parameters of the trained neural networks represent the features of LoC devices that behave as the aforementioned gates. This would mean that LoC devices universally compute.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En este proyecto se trata la simulación numérica de un fenómeno dinámico, basado en el comportamiento de una onda transmitida a lo largo de una cuerda elástica de un instrumento musical, cuyos extremos se encuentran anclados. El fenómeno físico, se desarrolla utilizando una ecuación en derivadas parciales hiperbólicas con variables espacial y temporal, acompañada por unas condiciones de contorno tipo Dirichlet en los extremos y por más condiciones iniciales que dan comienzo al proceso. Posteriormente se han generado algoritmos para el método numérico empleado (Diferencias finitas centrales y progresivas) y la programación del problema aproximado con su consistencia, estabilidad y convergencia, obteniéndose unos resultados acordes con la solución analítica del problema matemático. La programación y salida de resultados se ha realizado con Visual Studio 8.0. y la programación de objetos con Visual Basic .Net In this project the topic is the numerical simulation of a dynamic phenomenon, based on the behavior of a transmitted wave along an elastic string of a musical instrument, whose ends are anchored. The physical phenomenon is developed using a hyperbolic partial differential equation with spatial and temporal variables, accompanied by a Dirichlet boundary conditions at the ends and more initial conditions that start the process. Subsequently generated algorithms for the numerical method used (central and forward finite differences) and the programming of the approximate problem with consistency, stability and convergence, yielding results in line with the analytical solution of the mathematical problem. Programming and output results has been made with Visual Studio 8.0. and object programming with Visual Basic. Net

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electric probes are objects immersed in the plasma with sharp boundaries which collect of emit charged particles. Consequently, the nearby plasma evolves under abrupt imposed and/or naturally emerging conditions. There could be localized currents, different time scales for plasma species evolution, charge separation and absorbing-emitting walls. The traditional numerical schemes based on differences often transform these disparate boundary conditions into computational singularities. This is the case of models using advection-diffusion differential equations with source-sink terms (also called Fokker-Planck equations). These equations are used in both, fluid and kinetic descriptions, to obtain the distribution functions or the density for each plasma species close to the boundaries. We present a resolution method grounded on an integral advancing scheme by using approximate Green's functions, also called short-time propagators. All the integrals, as a path integration process, are numerically calculated, what states a robust grid-free computational integral method, which is unconditionally stable for any time step. Hence, the sharp boundary conditions, as the current emission from a wall, can be treated during the short-time regime providing solutions that works as if they were known for each time step analytically. The form of the propagator (typically a multivariate Gaussian) is not unique and it can be adjusted during the advancing scheme to preserve the conserved quantities of the problem. The effects of the electric or magnetic fields can be incorporated into the iterative algorithm. The method allows smooth transitions of the evolving solutions even when abrupt discontinuities are present. In this work it is proposed a procedure to incorporate, for the very first time, the boundary conditions in the numerical integral scheme. This numerical scheme is applied to model the plasma bulk interaction with a charge-emitting electrode, dealing with fluid diffusion equations combined with Poisson equation self-consistently. It has been checked the stability of this computational method under any number of iterations, even for advancing in time electrons and ions having different time scales. This work establishes the basis to deal in future work with problems related to plasma thrusters or emissive probes in electromagnetic fields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evolutionary, pattern forming partial differential equations (PDEs) are often derived as limiting descriptions of microscopic, kinetic theory-based models of molecular processes (e.g., reaction and diffusion). The PDE dynamic behavior can be probed through direct simulation (time integration) or, more systematically, through stability/bifurcation calculations; time-stepper-based approaches, like the Recursive Projection Method [Shroff, G. M. & Keller, H. B. (1993) SIAM J. Numer. Anal. 30, 1099–1120] provide an attractive framework for the latter. We demonstrate an adaptation of this approach that allows for a direct, effective (“coarse”) bifurcation analysis of microscopic, kinetic-based models; this is illustrated through a comparative study of the FitzHugh-Nagumo PDE and of a corresponding Lattice–Boltzmann model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-Fourier models of heat conduction are increasingly being considered in the modeling of microscale heat transfer in engineering and biomedical heat transfer problems. The dual-phase-lagging model, incorporating time lags in the heat flux and the temperature gradient, and some of its particular cases and approximations, result in heat conduction modeling equations in the form of delayed or hyperbolic partial differential equations. In this work, the application of difference schemes for the numerical solution of lagging models of heat conduction is considered. Numerical schemes for some DPL approximations are developed, characterizing their properties of convergence and stability. Examples of numerical computations are included.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An unabridged and unaltered republication of the Hedrick-Dunkel translation (v. 1-2); v. 3. newly translated by Howard G. Bergmann.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Available on demand as hard copy or computer file from Cornell University Library.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Available on demand as hard copy or computer file from Cornell University Library.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a review of modelling and control of biological nutrient removal (BNR)-activated sludge processes for wastewater treatment using distributed parameter models described by partial differential equations (PDE). Numerical methods for solution to the BNR-activated sludge process dynamics are reviewed and these include method of lines, global orthogonal collocation and orthogonal collocation on finite elements. Fundamental techniques and conceptual advances of the distributed parameter approach to the dynamics and control of activated sludge processes are briefly described. A critical analysis on the advantages of the distributed parameter approach over the conventional modelling strategy in this paper shows that the activated sludge process is more adequately described by the former and the method is recommended for application to the wastewater industry (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method has been constructed for the solution of a wide range of chemical plant simulation models including differential equations and optimization. Double orthogonal collocation on finite elements is applied to convert the model into an NLP problem that is solved either by the VF 13AD package based on successive quadratic programming, or by the GRG2 package, based on the generalized reduced gradient method. This approach is termed simultaneous optimization and solution strategy. The objective functional can contain integral terms. The state and control variables can have time delays. Equalities and inequalities containing state and control variables can be included into the model as well as algebraic equations and inequalities. The maximum number of independent variables is 2. Problems containing 3 independent variables can be transformed into problems having 2 independent variables using finite differencing. The maximum number of NLP variables and constraints is 1500. The method is also suitable for solving ordinary and partial differential equations. The state functions are approximated by a linear combination of Lagrange interpolation polynomials. The control function can either be approximated by a linear combination of Lagrange interpolation polynomials or by a piecewise constant function over finite elements. The number of internal collocation points can vary by finite elements. The residual error is evaluated at arbitrarily chosen equidistant grid-points, thus enabling the user to check the accuracy of the solution between collocation points, where the solution is exact. The solution functions can be tabulated. There is an option to use control vector parameterization to solve optimization problems containing initial value ordinary differential equations. When there are many differential equations or the upper integration limit should be selected optimally then this approach should be used. The portability of the package has been addressed converting the package from V AX FORTRAN 77 into IBM PC FORTRAN 77 and into SUN SPARC 2000 FORTRAN 77. Computer runs have shown that the method can reproduce optimization problems published in the literature. The GRG2 and the VF I 3AD packages, integrated into the optimization package, proved to be robust and reliable. The package contains an executive module, a module performing control vector parameterization and 2 nonlinear problem solver modules, GRG2 and VF I 3AD. There is a stand-alone module that converts the differential-algebraic optimization problem into a nonlinear programming problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 26A33 (main), 44A40, 44A35, 33E30, 45J05, 45D05