977 resultados para Organic Polymer
Resumo:
Työn tarkoituksena oli kehittää analyyttinen erotusmenetelmä eräässä valmistusprosessissa käytettävän hapettavan aineen ja liuottimen välillä syntyvien reaktiotuotteiden tutkimiseen ja analysoimiseen. Lisäksi tarkoituksena oli tutkia prosessiolosuhteiden turvallisuutta. Kirjallisuusosassa käsitellään erilaisia orgaanisia peroksideja, niiden käyttötarkoituksia ja niiden käyttöön liittyviä huomioitavia asioita. Lisäksi tarkastellaan yleisimpiä analyysimenetelmiä, joita on käytetty erilaisten peroksidien analysoinnissa. Näitä analyysimenetelmiä on useimmiten käytetty nestemäisten näytteiden tutkimuksissa. Harvemmin on analysoitu kaasu- ja kiintoainenäytteitä. Kokeellisessa osassa kehitettiin kirjallisuuden perusteella peroksidiyhdisteille identifiointimenetelmä ja tutkittiin prosessin näytteet. Analyysimenetelmiksi valittiin iodometrinen titraus ja HPLC-UV-MS-menetelmä. Lisäksi käytettiin peroksidimittaukseen soveltuvia testiliuskoja. Tutkimus osoitti, että iodometrisen titrauksen ja testiliuskojen perusteella näytteissä oli vähäisiä määriä peroksideja viikon jälkeen peroksidilisäyksestä. HPLC-UV-MS-analyysien perusteella näytteiden analysointia häiritsi selluloosa, jota löytyi jokaisesta näytteestä.
Resumo:
Many attempts have been made to establish the control of foodborne pathogens through Lactobacillus isolates and their metabolism products with success being obtained in several situations. The aim of this study was to investigate the antagonistic effect of eight Lactobacillusisolates, including L. caseisubsp. pseudoplantarum,L. plantarum, L. reuteri and L. delbrueckii subsp. delbrueckii, on the pathogenic Escherichia colistrain O157:H7. The inhibitory effect of pure cultures and two pooled cultures supernatants of Lactobacillus on the growth of pathogenic bacteria was evaluated by the spot agar method and by monitoring turbidity. Antimicrobial activity was confirmed for L. reuteri and L. delbrueckii subsp. delbrueckii and for a pool of lactic acid bacteria. The neutralized supernatant of the pool exerted a higher antimicrobial activity than that of the individual strains. Furthermore, D-lactic acid and acetic acid were produced during growth of the Lactobacillus isolates studied.
Effect of particle morphology on the mechanical and thermo-mechanical behavior of polymer composites
Resumo:
Fiber reinforced polymer composites have been used in many applications, such as in automobile, aerospace and naval industries, due basically to their high strength-to-weight and modulus-to-weight, among other properties. Even though particles are usually not able to lead to the level of reinforcement of fibers, particle reinforced polymer composites have been proposed for many new applications due to their low cost, easy fabrication and isotropic properties. In this work, polymer composites were prepared by incorporating glass particles of different morphologies on poly(aryl sulfones) matrices. Particles with aspect ratios equal to 1, 2.5 and 10 were used. The prepared composites were characterized using electron microscopy and thermal analysis. Mechanical properties of the composites were evaluated using a four-point bending test. The thermo-mechanical behavior of the obtained composites was also investigated. The results showed that the morphology of the particles alter significantly the mechanical properties of composites. Particles with larger values of aspect ratio led to large elastic modulus but low levels of strain at failure. This result was explained by modeling the thermo-mechanical behavior of the composites using a viscoelastic model. Parameters of the model, obtained from a Cole-Cole type of plot, demonstrated that interactions at the polymer-reinforcing agent interface were higher for composites with large aspect ratio particles. Higher levels of interactions at interfaces can lead to higher degrees of stress transfer and, consequently, to composites with large elastic modulus, as experimentally observed.
Resumo:
Advanced oxidation processes (AOPs) have been studied and developed to suffice the effective removal of refractory and toxic compounds in polluted water. The quality and cost of wastewater treatment need improvements, and electric discharge technology has a potential to make a significant difference compared to other established AOPs based on energy efficiency. The generation of active oxidant species such as ozone and hydroxyl radicals by high voltage discharge is a relatively new technology for water treatment. Gas-phase pulsed corona discharge (PCD), where a treated aqueous solution is dispersed between corona-producing electrodes free of the dielectric barriers, was developed as an alternative approach to the problem. The short living radicals and ozone formed in the gas phase and at the gas-liquid interface react with dissolved impurities. PCD equipment has a relatively simple configuration, and with the reactor in an enclosed compartment, it is insensitive towards gas humidity and does not need the gas transport. In this thesis, PCD was used to study and evaluate the energy efficiency for degrading various organic compounds, as well as the chemistry of the oxidation products formed. The experiments investigate the aqueous oxidation of phenol, humic substances, pharmaceutical compounds (paracetamol, ibuprofen, indomethacin, salicylic acids, -estradiol), as well as lignin degradation and transformation to aldehydes. The study aims to establish the influence of initial concentration of the target pollutant, the pulsed discharge parameters, gas phase composition and the pH on the oxidation kinetics and the efficiency. Analytical methods to measure the concentrations of the target compounds and their by-products include HPLC, spectrophotometry, TOC and capillary electrophoresis. The results of the research included in this summary are presented in the attached publications and manuscripts accepted for publication. Pulsed corona discharge proved to be highly effective in oxidizing each of the target compounds, surpassing the closest competitor, conventional ozonation. The increase in oxidation efficiencies for some compounds in oxygen media and at lower pulse repetition frequencies shows a significant role of ozone. The role of the ·OH radicals was established in the surface reactions. The main oxidation products, formation of nitrates, and the lignin transformation were quantified. A compound specific approach is suggested for optimization of the PCD parameters that have the most significant impact on the oxidation energy efficiency because of the different characteristics and responses of the target compound to the oxidants, as well as different admixtures that are present in the wastewater. Further studies in the method’s safety (nitration and nitrosation of organic compounds, nitrite and nitrate formation enhancement) are needed for promoting the method.
Resumo:
Polymeric materials that conduct electricity are highly interesting for fundamental studies and beneficial for modern applications in e.g. solar cells, organic field effect transistors (OFETs) as well as in chemical and bio‐sensing. Therefore, it is important to characterize this class of materials with a wide variety of methods. This work summarizes the use of electrochemistry also in combination with spectroscopic methods in synthesis and characterization of electrically conducting polymers and other π‐conjugated systems. The materials studied in this work are intended for organic electronic devices and chemical sensors. Additionally, an important part of the presented work, concerns rational approaches to the development of water‐based inks containing conducting particles. Electrochemical synthesis and electroactivity of conducting polymers can be greatly enhanced in room temperature ionic liquids (RTILs) in comparison to conventional electrolytes. Therefore, poly(para‐phyenylene) (PPP) was electrochemically synthesized in the two representative RTILs: bmimPF6 and bmiTf2N (imidazolium and pyrrolidinium‐based salts, respectively). It was found that the electrochemical synthesis of PPP was significantly enhanced in bmimPF6. Additionally, the results from doping studies of PPP films indicate improved electroactivity in bmimPF6 during oxidation (p‐doping) and in bmiTf2N in the case of reduction (n‐doping). These findings were supported by in situ infrared spectroscopy studies. Conducting poly(benzimidazobenzophenanthroline) (BBL) is a material which can provide relatively high field‐effect mobility of charge carriers in OFET devices. The main disadvantage of this n‐type semiconductor is its limited processability. Therefore in this work BBL was functionalized with poly(ethylene oxide) PEO, varying the length of side chains enabling water dispersions of the studied polymer. It was found that functionalization did not distract the electrochemical activity of the BBL backbone while the processability was improved significantly in comparison to conventional BBL. Another objective was to study highly processable poly(3,4‐ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) water‐based inks for controlled patterning scaled‐down to nearly a nanodomain with the intention to fabricate various chemical sensors. Developed PEDOT:PSS inks greatly improved printing of nanoarrays and with further modification with quaternary ammonium cations enabled fabrication of PEDOT:PSS‐based chemical sensors for lead (II) ions with enhanced adhesion and stability in aqueous environments. This opens new possibilities for development of PEDOT:PSS films that can be used in bio‐related applications. Polycyclic aromatic hydrocarbons (PAHs) are a broad group of π‐conjugated materials consisting of aromatic rings in the range from naphthalene to even hundred rings in one molecule. The research on this type of materials is intriguing, due to their interesting optical properties and resemblance of graphene. The objective was to use electrochemical synthesis to yield relatively large PAHs and fabricate electroactive films that could be used as template material in chemical sensors. Spectroscopic, electrochemical and electrical investigations evidence formation of highly stable films with fast redox response, consisting of molecules with 40 to 60 carbon atoms. Additionally, this approach in synthesis, starting from relatively small PAH molecules was successfully used in chemical sensor for lead (II).
Resumo:
Fiber-reinforced composites (FRCs) are a new group of non-metallic biomaterials showing a growing popularity in many dental and medical applications. As an oral implant material, FRC is biocompatible in bone tissue environment. Soft tissue integration to FRC polymer material is unclear. This series of in vitro studies aimed at evaluating unidirectional E-glass FRC polymer in terms of mechanical, chemical, and biological properties in an attempt to develop a new non-metallic oral implant abutment alternative. Two different types of substrates were investigated: (a) Plain polymer (BisGMA 50%–TEGDMA 50%) and (b) Unidirectional FRC. The mechanical behavior of high fiber-density FRCs was assessed using a three-point bending test. Surface characterization was performed using scanning electron and spinning disk confocal microscopes. The surface wettability/energy was determined using sessile drop method. The blood response, including blood-clotting ability and platelet morphology was evaluated. Human gingival fibroblast cell responses - adhesion kinetics, adhesion strength, and proliferation activity - were studied in cell culture environment using routine test conditions. A novel tissue culture method was developed and used to evaluate porcine gingival tissue graft attachment and growth on the experimental composite implants. The analysis of the mechanical properties showed that there is a direct proportionality in the relationship between E-glass fiber volume fraction and toughness, modulus of elasticity, and load bearing capacity; however, flexural strength did not show significant improvement when high fiber-density FRC is used. FRCs showed moderate hydrophilic properties owing to the presence of exposed glass fibers on the polymer surface. Blood-clotting time was shorter on FRC substrates than on plain polymer. The FRC substrates also showed higher platelet activation state than plain polymer substrates. Fibroblast cell adhesion strength and proliferation rate were highly pronounced on FRCs. A tissue culture study revealed that gingival epithelium and connective tissue established an immediate close contact with both plain polymer and FRC implants. However, FRC seemed to guide epithelial migration outwards from the tissue/implant interface. Due to the anisotropic and hydrophilic nature of FRC, it can be concluded that this material enhances biological events related with soft tissue integration on oral implant surface.
Resumo:
Adsorption of two herbicides, atrazine and picloram, displaying different sorption characteristics, were evaluated for O (organic) horizon samples collected from SMZs (streamside management zones) in Piedmont (Ultisol) of Georgia, USA. Samples were randomly collected from within 5 SMZs selected for a study of surface flow in field trials. The five SMZs represented five different slope classes, 2, 5, 10, 15 and 20%. Results indicate that 0 horizons have the potential for sorbing atrazine from surface water moving through forested SMZs. Atrazine adsorption was nearly linear over a 24-hour period. Equilibrium adsorption, determined through 24-hour laboratory tests, resulted in a Freundlich coefficient of 67.5 for atrazine. For picloram, negative adsorption was observed in laboratory experiments. This seemed to be due to interference with ELISA analyses; however, this was not confirmed. The adsorption coefficient (Kd) obtained for atrazine in 0 horizons was greater than it would have been expected for mineral soil (from 1 to 4). Picloram was not sorbed in 0 horizons at any significant degree. Although there is a significant potential for the direct adsorption of soluble forms of herbicides in SMZs, the actual value of this adsorption for protecting water is likely to be limited even for relatively strongly sorbed chemicals, such as atrazine, due to relatively slow uptake kinetics.
Resumo:
Weed control has always been an important issue in agriculture. With the advent of no-till systems, soil erosion was reduced but herbicide use was increased. Organic no-till systems try to adjust reduced erosion to the no use of herbicides. Nevertheless, this adjustment is limited by the cost of mechanical weed control. This cost may be reduced by improved cultural weed control with cover crops mulches. In this paper we report a study on the application of compost manure on an oats winter cover crop, preceding soybean, instead of on the soybean summer crop. Treatments comprised a control without compost manure, and compost manure doses of 4 and 8 Mg ha-1 applied either on oats in winter or soybean in summer, organized in a randomized block design, with five replications. In summer, plots were split into weed-controlled or not controlled subplots. The timing of application and the manure doses did not affect the oats biomass or the soybean performance. However, in summer, without water stress, the application of manure at 8 Mg ha-1 directly on soybean has reduced weed biomass in this crop.
Resumo:
Mowing is one of the most important methods used to control weeds in organic farming, under the no-tillage system. This study aimed to evaluate the effects of three weed management techniques on weed development, using the weeds Bidens pilosa and Commelina benghalensis, in competition with organic corn {mowing at the three-leaf stage (14 days after corn emergence - DACE), mowing at the three- and six-leaf stage (14 and 25 DACE), and no mowing. Single cultivation with no mowing was also evaluated for these weeds. Mowings performed at 14 and 25 DACE prevented the production of B. pilosa seeds, ensuring efficient control of this species. However, the use of this technique was shown to be inefficient in the control of C. benghalensis.
Resumo:
Currently, one of the biggest challenges faced by organic no-tillage farming is weed control. Thus, the use of cropping practices that help in the control of weeds is extremely important. The objective of this study was to evaluate population density and level of weed infestation in an organic no-tillage corn cropping system under different soil covers. The experiment was conducted in a randomized block design with six repetitions and five treatments, consisting of three soil covers in an organic no-tillage system, and an organic and a conventional system, both without soil cover. The treatments with soil cover used a grass species represented by the black oat, a leguminous species represented by the white lupine, and intercropping between both species. Corn was sown with spacing of 1.0 m between rows and 0.20 m between plants, using the commercial hybrid AG 1051. Infestation in corn was evaluated at stages V5 and V10, and weed density was evaluated at stage V5. The use of black oat straw alone or intercropped with white lupine, in the organic no-tillage corn cropping system, reduced the percentage of weed infestation and absolute weed density. Management-intensive systems and systems without soil cover showed higher relative densities for species Oxalis spp., Galinsoga quadriradiata and Stachys arvensis. The species Cyperus rotundus showed the highest relative density on organic no-tillage corn cropping systems. Black oat straw in the organic no-tillage cropping system limited the productive potential of corn.
Resumo:
The sustainable management of municipal solid waste in the Kathmandu Valley has always been a challenging task. Solid waste generation has gone rapidly high in the Kathmandu Valley over the last decade due to booming population and rapid urbaniza-tion. Finding appropriate landfill sites for the disposal of solid wastes generated from the households of the Kathmandu Valley has always been a major problem for Nepalese government. 65 % of total generated wastes from the households of Nepal consist of organic materials. As large fractions of generated household wastes are organic in na-ture, composting can be considered as one of the best sustainable ways to recycle organ-ic wastes generated from the households of Nepal. Model Community Society Development (MCDS), a non-governmental organization of Nepal carried out its small-scale project in five households of the Kathmandu Valley by installing composting reactors. This thesis is based on this small-scale project and has used secondary data provided by MCDS Nepal for carrying out the study. Proper man-agement of organic wastes can be done at household levels through the use of compost-ing reactors. The end product compost can be used as soil conditioners for agricultural purposes such as organic farming, roof-top farming and gardening. The overall average organic waste generation in the Kathmandu Valley is found to be 0,23 kg/person/day and the total amount of organic household wastes generated in the Kathmandu Valley is around 210 Gg/yr. Produced composts from five composting reac-tors contain high amount of moistures but have sufficient amount of nutrients required for the fertility of land and plant growth. Installation of five composting reactors in five households have prevented 2,74 Mg of organic wastes going into the landfills, thus re-ducing 107 kg of methane emissions which is equivalent to 2,7 Mg of carbondioxide.
Resumo:
Organic farming is perceived to be an environmental friendly method of food production, thus assumed to be an alternative means of minimizing food-based environmental footprints. However, lower yield and unproductive years in organic crop rotation raise questions of whether it is really an environmentally friendly farming practice. Thus, the aim of this thesis was to examine the carbon footprint and energy demands of organic carrots cultivated and sold in South-Savo, Finland and compare them with those of local and imported conventional carrots using lifecycle assessment (LCA) as a method. From the investigation, it was found that organic carrots produced in South-Savo have the lowest GHG emissions and energy demand. The GHG emissions of local organic, local conventional and imported conventional carrots were found to be 4g CO2 eq. kgcarrots-1, 142g CO2 eq. kgcarrots-1 and 280 g CO2 eq. kgcarrots-1, respectively. On the other hand, energy demand for those carrots was found to be 1,33 MJ, 1,88 MJ and 3,68 MJ kgcarrots-1. Furthermore, it was also found that local organic carrots would have approximately similar GHG emissions as conventional counterpart if soil carbon stock change was excluded from the study.
Resumo:
Electrokinetics has emerged as a potential technique for in situ soil remediation and especially unique because of the ability to work in low permeability soil. In electrokinetic remediation, non-polar contaminants like most organic compounds are transported primarily by electroosmosis, thus the process is effective only if the contaminants are soluble in pore fluid. Therefore, enhancement is needed to improve mobility of these hydrophobic compounds, which tend to adsorb strongly to the soil. On the other hand, as a novel and rapidly growing science, the applications of ultrasound in environmental technology hold a promising future. Compared to conventional methods, ultrasonication can bring several benefits such as environmental friendliness (no toxic chemical are used or produced), low cost, and compact instrumentation. It also can be applied onsite. Ultrasonic energy applied into contaminated soils can increase desorption and mobilization of contaminants and porosity and permeability of soil through developing of cavitation. The research investigated the coupling effect of the combination of these two techniques, electrokinetics and ultrasonication, in persistent organic pollutant removal from contaminated low permeability clayey soil (with kaolin as a model medium). The preliminary study checked feasibility of ultrasonic treatment of kaolin highly contaminated by persistent organic pollutants (POPs). The laboratory experiments were conducted in various conditions (moisture, frequency, power, duration time, initial concentration) to examine the effects of these parameters on the treatment process. Experimental results showed that ultrasonication has a potential to remove POPs, although the removal efficiencies were not high with short duration time. The study also suggested intermittent ultrasonication over longer time as an effective means to increase the removal efficiencies. Then, experiments were conducted to compare the performances among electrokinetic process alone and electrokinetic processes combined with surfactant addition and mainly with ultrasonication, in designed cylinders (with filtercloth separating central part and electrolyte parts) and in open pans. Combined electrokinetic and ultrasonic treatment did prove positive coupling effect compared to each single process alone, though the level of enhancement is not very significant. The assistance of ultrasound in electrokinetic remediation can help reduce POPs from clayey soil by improving the mobility of hydrophobic organic compounds and degrading these contaminants through pyrolysis and oxidation. Ultrasonication also sustains higher current and increases electroosmotic flow. Initial contaminant concentration is an essential input parameter that can affect the removal effectiveness.
Resumo:
Lignin, after cellulose, is the second most abundant biopolymer on Earth, accounting for 30% of the organic carbon in the biosphere. It is considered an important evolutionary adaptation of plants during their transition from the aquatic environment to land, since it bestowed the early tracheophytes with physical support to stand upright and enabled long-distance transport of water and solutes by waterproofing the vascular tissue. Although essential for plant growth and development, lignin is the major plant cell wall component responsible for biomass recalcitrance to industrial processing. The fact that lignin is a non-linear aromatic polymer built with chemically diverse and poorly reactive linkages and a variety of monomer units precludes the ability of any single enzyme to properly recognize and degrade it. Consequently, the use of lignocellulosic feedstock as a renewable and sustainable resource for the production of biofuels and bio-based materials will depend on the identification and characterization of the factors that determine plant biomass recalcitrance, especially the highly complex phenolic polymer lignin. Here, we summarize the current knowledge regarding lignin metabolism in plants, its effect on biomass recalcitrance and the emergent strategies to modify biomass recalcitrance through metabolic engineering of the lignin pathway. In addition, the potential use of sugarcane as a second-generation biofuel crop and the advances in lignin-related studies in sugarcane are discussed.