960 resultados para Order-preserving Functions
Resumo:
Underlying the unique structures and diverse functions of proteins area vast range of amino-acid sequences and a highly limited number of folds taken up by the polypeptide backbone. By investigating the role of noncovalent connections at the backbone level and at the detailed side-chain level, we show that these unique structures emerge from interplay between random and selected features. Primarily, the protein structure network formed by these connections shows simple (bond) and higher order (clique) percolation behavior distinctly reminiscent of random network models. However, the clique percolation specific to the side-chain interaction network bears signatures unique to proteins characterized by a larger degree of connectivity than in random networks. These studies reflect some salient features of the manner in which amino acid sequences select the unique structure of proteins from the pool of a limited number of available folds.
Resumo:
Erwinia carotovora subsp. carotovora (Ecc) is a Gram-negative enterobacterium that causes soft-rot in potato and other crops. The main virulence determinants, the extracellular plant cell wall -degrading enzymes (PCWDEs), lead to plant tissue maceration. In order to establish a successful infection the production of PCWDEs are controlled by a complex regulatory network, including both specific and global activators and repressors. One of the most important virulence regulation systems in Ecc is mediated by quorum sensing (QS), which is a population density -dependent cell-to-cell communication mechanism used by many Gram-negative bacteria. In these bacteria N-acylhomoserine lactones (AHSL), act as diffusible signaling molecules enabling communication between bacterial cells. The AHSLs are structurally diverse and differ in their acyl chain length. This gives the bacteria signaling specificity and enables the recognition and communication within its own species. In order to detect and respond to the AHSLs the bacteria use QS regulators, LuxR-type proteins. The aim of this study was to get a deeper understanding of the Ecc QS system. In the first part of the study we showed that even different strains of Ecc use different dialects and of physiological concentrations, only the cognate AHSL with the correct acyl chain is recognized as a signal that can switch on virulence genes. The molecular basis of the substrate specificity of the AHSL synthase ExpI was investigated in order to recognize the acyl chain length specificity determinants of distinct AHSL synthases. Several critical residues that define the size of the substrate-binding pocket were identified. We demonstrated that in the ExpISCC1 mutations M127T and F69L are sufficient to change the N-3-oxohexanoyl-L-homoserine lactone producing ExpISCC1 to an N-3-oxooctanoyl-L-homoserine lactone (3-oxo-C8-HSL) producing enzyme. In the second study the means of sensing specificity and response to the AHSL signaling molecule were investigated. We demonstrated that the AHSL receptor ExpR1 of Ecc strain SCC3193 has strict specificity for the cognate AHSL 3-oxo-C8-HSL. In addition we identified a second AHSL receptor ExpR2 with a novel property to sense AHSLs with different acyl chain lengths. In the absence of AHSLs ExpR1 and ExpR2 were found to act synergistically to repress the virulence gene expression. This repression was shown to be released by addition of AHSLs and appears to be largely mediated by the global negative regulator RsmA. In the third study random transposon mutagenesis was used to widen the knowledge of the Ecc QS regulon. Two new QS-controlled target genes, encoding a DNA-binding regulator Hor and a plant ferredoxin-like protein FerE, were identified. The QS control of the identified genes was executed by the QS regulators ExpR1 and ExpR2 and as expression of PCWDE genes mediated by the RsmA repressor. Hor was shown to contribute to bacterial virulence at least partly through its control of PCWDE production, while FerE was shown to contribute to oxidative stress tolerance and in planta fitness of the bacteria. In addition our results suggest that QS is central to the control of oxidative stress tolerance in Ecc. In conclusion, these results indicate that Ecc strain SCC3193 is able to react and respond both to the cognate AHSL signal and the signals produced by other bacterial species, in order to control a wide variety of functions in the plant pathogen Ecc.
Resumo:
Lignin is a complex plant polymer synthesized through co-operation of multiple intracellular and extracellular enzymes. It is deposited to plant cell walls in cells where additional strength or stiffness are needed, such as in tracheary elements (TEs) in xylem, supporting sclerenchymal tissues and at the sites of wounding. Class III peroxidases (POXs) are secreted plant oxidoreductases with implications in many physiological processes such as the polymerization of lignin and suberin and auxin catabolism. POXs are able to oxidize various substrates in the presence of hydrogen peroxide, including lignin monomers, monolignols, thus enabling the monolignol polymerization to lignin by radical coupling. Trees produce large amounts of lignin in secondary xylem of stems, branches and roots. In this study, POXs of gymnosperm and angiosperm trees were studied in order to find POXs which are able to participate in lignin polymerization in developing secondary xylem i.e. are located at the site of lignin synthesis in tree stems and have the ability to oxidize monolignol substrates. Both in the gymnosperm species, Norway spruce and Scots pine, and in the angiosperm species silver birch the monolignol oxidizing POX activities originating from multiple POX isoforms were present in lignifying secondary xylem in stems during the period of annual growth. Most of the partially purified POXs from Norway spruce and silver birch xylem had highest oxidation rate with coniferyl alcohol, the main monomer in guaiacyl-lignin in conifers. The only exception was the most anionic POX fraction from silver birch, which clearly preferred sinapyl alcohol, the lignin monomer needed in the synthesis of syringyl-guaiacyl lignin in angiosperm trees. Three full-length pox cDNAs px1, px2 and px3 were cloned from the developing xylem of Norway spruce. It was shown that px1 and px2 are expressed in developing tracheids in spruce seedlings, whereas px3 transcripts were not detected suggesting low transcription level in young trees. The amino acid sequences of PX1, PX2 and PX3 were less than 60% identical to each other but showed up to 84% identity to other known POXs. They all begin with predicted N-terminal secretion signal (SS) peptides. PX2 and PX3 contained additional putative vacuolar localization determinants (VSDs) at C-terminus. Transient expression of EGFP-fusions of the SS- and VSD-peptides in tobacco protoplasts showed SS-peptides directed EGFP to secretion in tobacco cells, whereas only the PX2 C-terminal peptide seems to be a functional VSD. According to heterologous expression of px1 in Catharanthus roseus hairy roots, PX1 is a guaicol-oxidizing POX with isoelectric point (pI) approximately 10, similar to monolignol oxidizing POXs in protein extracts from Norway spruce lignifying xylem. Hence, PX1 has characteristics for participation to monolignol dehydrogenation in lignin synthesis, whereas the other two spruce POXs seem to have some other functions. Interesting topics in future include functional characterization of syringyl compound oxidizing POXs and components of POX activity regulation in trees.
Resumo:
Measurements of both the velocity and the temperature field have been made in the thermal layer that grows inside a turbulent boundary layer which is subjected to a small step change in surface heat flux. Upstream of the step, the wall heat flux is zero and the velocity boundary layer is nearly self-preserving. The thermal-layer measurements are discussed in the context of a self-preserving analysis for the temperature disturbance which grows underneath a thick external turbulent boundary layer. A logarithmic mean temperature profile is established downstream of the step but the budget for the mean-square temperature fluctuations shows that, in the inner region of the thermal layer, the production and dissipation of temperature fluctuations are not quite equal at the furthest downstream measurement station. The measurements for both the mean and the fluctuating temperature field indicate that the relaxation distance for the thermal layer is quite large, of the order of 1000θ0, where θ0 is the momentum thickness of the boundary layer at the step. Statistics of the thermal-layer interface and conditionally sampled measurements with respect to this interface are presented. Measurements of the temperature intermittency factor indicate that the interface is normally distributed with respect to its mean position. Near the step, the passive heat contaminant acts as an effective marker of the organized turbulence structure that has been observed in the wall region of a boundary layer. Accordingly, conditional averages of Reynolds stresses and heat fluxes measured in the heated part of the flow are considerably larger than the conventional averages when the temperature intermittency factor is small.
Resumo:
A nonexhaustive procedure for obtaining minimal Reed-Muller canonical (RMC) forms of switching functions is presented. This procedure is a modification of a procedure presented earlier in the literature and enables derivation of an upper bound on the number of RMC forms to be derived to choose a minimal one. It is shown that the task of obtaining minimal RMC forms is simplified in the case of symmetric functions and self-dual functions.
Resumo:
The pathogenesis of inflammatory rheumatic diseases, including rheumatoid arthritis (RA) and spondyloarthropathies (SpAs) such as reactive arthritis (ReA), is incompletely understood. ReA is a sterile joint inflammation, which may follow a distal infection caused by Gram-negative bacteria that have lipopolysaccharide (LPS) in their outer membrane. The functions of innate immunity that may affect the pathogenesis, prognosis and treatment of these diseases were studied in this thesis. When compared with healthy controls, whole blood monocytes of healthy subjects with previous ReA showed enhanced capacity to produce TNF, an essential proinflammatory cytokine, in response to adherent conditions (mimicking vascular endothelium made adherent by inflammatory signals) and non-specific protein kinase C stimulation. Also, blood neutrophils of these subjects showed high levels of CD11b, an important adhesion molecule, in response to adherence or LPS. Thus, high responsiveness of monocytes and neutrophils when encountering inflammatory stimuli may play a role in the pathogenesis of ReA. The results also suggested that the known risk allele for SpAs, HLA-B27, may be an additive contributor to the observed differences. The promoter polymorphisms TNF 308A and CD14 (gene for an LPS receptor component) 159T were found not to increase the risk of acute arthritis. However, all female patients who developed chronic SpA had 159T and none of them had 308A, possibly reflecting an interplay between hormonal and inflammatory signals in the development of chronic SpA. Among subjects with early RA, those having the polymorphic TLR4 +896G allele (causing the Asp299Gly change in TLR4, another component of LPS receptor) required a combination of disease-modifying antirheumatic drugs to achieve remission. It is known that rapid treatment response is essential in order to maintain the patients work ability. Hence, +896G might be a candidate marker for identifying the patients who need combination treatment. The production of vascular endothelial growth factor (VEGF), which strongly promotes vascular permeability and angiogenesis that takes place e.g. early in rheumatic joints, was induced by LPS and inhibited by interferon (IFN)-alpha in peripheral blood mononuclear cells. These long-living cells might provide a source of VEGF when stimulated by LPS and migrating to inflamed joints, and the effect of IFN-alpha may contribute to the clinical efficacy of this cytokine in inhibiting joint inflammation.
Resumo:
The actin cytoskeleton is essential for many cellular processes, including motility, morphogenesis, endocytosis and signal transduction. Actin can exist in monomeric (G-actin) or filamentous (F-actin) form. Actin filaments are considered to be the functional form of actin, generating the protrusive forces characteristic for the actin cytoskeleton. The structure and dynamics of the actin filament and monomer pools are regulated by a large number of actin-binding proteins in eukaryotic cells. Twinfilin is an evolutionarily conserved small actin monomer binding protein. Twinfilin is composed of two ADF/cofilin-like domains, separated by a short linker and followed by a C-terminal tail. Twinfilin forms a stable, high affinity complex with ADP-G-actin, inhibits the nucleotide exchange on actin monomers, and prevents their assembly into filament ends. Twinfilin was originally identified from yeast and has since then been found from all organisms studied except plants. Not much was known about the role of twinfilin in the actin dynamics in mammalian cells before this study. We set out to unravel the mysteries still covering twinfilins functions using biochemistry, cell biology, and genetics. We identified and characterized two mouse isoforms for the previously identified mouse twinfilin-1. The new isoforms, twinfilin-2a and -2b, are generated from the same gene through alternative promoter usage. The three isoforms have distinctive expression patterns, but are similar biochemically. Twinfilin-1 is the major isoform during development and is expressed in high levels in almost all tissues examined. Twinfilin-2a is also expressed almost ubiquitously, but at lower levels. Twinfilin-2b turned out to be a muscle-specific isoform, with very high expression in heart and skeletal muscle. It seems all mouse tissues express at least two twinfilin isoforms, indicating that twinfilins are important regulators of actin dynamics in all cell and tissue types. A knockout mouse line was generated for twinfilin-2a. The mice homozygous for this knockout were viable and developed normally, indicating that twinfilin-2a is dispensable for mouse development. However, it is important to note that twinfilin-2a shows similar expression pattern to twinfilin-1, suggesting that these proteins play redundant roles in mice. All mouse isoforms were shown to be able to sequester actin filaments and have higher affinity for ADP-G-actin than ATP-G-actin. They are also able to directly interact with heterodimeric capping protein and PI(4,5)P2 similar to yeast twinfilin. In this study we also uncovered a novel function for mouse twinfilins; capping actin filament barbed ends. All mouse twinfilin isoforms were shown to possess this function, while yeast and Drosophila twinfilin were not able to cap filament barbed ends. Twinfilins localize to the cytoplasm but also to actin-rich regions in mammalian cells. The subcellular localizations of the isoforms are regulated differently, indicating that even though twinfilins biochemical functions in vitro are very similar, in vivo they can play different roles through different regulatory pathways. Together, this study show that twinfilins regulate actin filament assembly both by sequestering actin monomers and by capping filament barbed ends, and that mammals have three biochemically similar twinfilin isoforms with partially overlapping expression patterns.
Resumo:
One major reason for the global decline of biodiversity is habitat loss and fragmentation. Conservation areas can be designed to reduce biodiversity loss, but as resources are limited, conservation efforts need to be prioritized in order to achieve best possible outcomes. The field of systematic conservation planning developed as a response to opportunistic approaches to conservation that often resulted in biased representation of biological diversity. The last two decades have seen the development of increasingly sophisticated methods that account for information about biodiversity conservation goals (benefits), economical considerations (costs) and socio-political constraints. In this thesis I focus on two general topics related to systematic conservation planning. First, I address two aspects of the question about how biodiversity features should be valued. (i) I investigate the extremely important but often neglected issue of differential prioritization of species for conservation. Species prioritization can be based on various criteria, and is always goal-dependent, but can also be implemented in a scientifically more rigorous way than what is the usual practice. (ii) I introduce a novel framework for conservation prioritization, which is based on continuous benefit functions that convert increasing levels of biodiversity feature representation to increasing conservation value using the principle that more is better. Traditional target-based systematic conservation planning is a special case of this approach, in which a step function is used for the benefit function. We have further expanded the benefit function framework for area prioritization to address issues such as protected area size and habitat vulnerability. In the second part of the thesis I address the application of community level modelling strategies to conservation prioritization. One of the most serious issues in systematic conservation planning currently is not the deficiency of methodology for selection and design, but simply the lack of data. Community level modelling offers a surrogate strategy that makes conservation planning more feasible in data poor regions. We have reviewed the available community-level approaches to conservation planning. These range from simplistic classification techniques to sophisticated modelling and selection strategies. We have also developed a general and novel community level approach to conservation prioritization that significantly improves on methods that were available before. This thesis introduces further degrees of realism into conservation planning methodology. The benefit function -based conservation prioritization framework largely circumvents the problematic phase of target setting, and allowing for trade-offs between species representation provides a more flexible and hopefully more attractive approach to conservation practitioners. The community-level approach seems highly promising and should prove valuable for conservation planning especially in data poor regions. Future work should focus on integrating prioritization methods to deal with multiple aspects in combination influencing the prioritization process, and further testing and refining the community level strategies using real, large datasets.
Resumo:
This work presents a numerical analysis of simultaneous mould filling and phase change for solidification in a two-dimensional rectangular cavity. The role of residual flow strength and temperature gradients within the solidifying domain, caused by the filling process, on the evolution of solidification interface are investigated. An implicit volume of fluid (VOF)-based algorithm has been employed for simulating the free surface flows during the filling process, while the model for solidification is based on a fixed-grid enthalpy-based control volume approach. Solidification modeling is coupled with VOF through User Defined Functions developed in the commercial computational fluid dynamics (CFD) code FLUENT 6.3.26. Comparison between results of the conventional analysis without filling effect and those of the present analysis shows that the residual flow resulting from the filling process significantly influences the progress of the solidification interface. A parametric study is also performed with variables such as cooling rate, filling velocity and filling configuration, in order to investigate the coupled effects of the buoyancy-driven flow and the residual flow on the solidification behavior.
Resumo:
Frequencies of free vibration of rectangular plates of arbitrary thickness, with different support conditions, are calculated by using the Method of Initial Functions (MIF), proposed by Vlasov. Sixth and fourth order MIF theories are used for the solution. Numerical results are presented for three square plates for three thickness ratios. The support conditions considered are (i) three sides simply supported and one side clamped, (ii) two opposite sides simply supported and the other two sides clamped and (iii) all sides clamped. It is found that the results produced by the MIF method are in fair agreement with those obtained by using other methods. The classical theory gives overestimates of the frequencies and the departures from the MIF results increase for higher modes and larger thickness ratios.
Resumo:
The response of a third order non-linear system subjected to a pulse excitation is analysed. A transformation of the displacement variable is effected. The transformation function chosen is the solution of the linear problem subjected to the same pulse. With this transformation the equation of motion is brought into a form in which the method of variation of parameters is applicable for the solution of the problem. The method is applied to a single axis gyrostabilized platform subjected to an exponentially decaying pulse. The analytical results are compared with digital and analog computer solutions.
Resumo:
Filamentous fungi of the subphylum Pezizomycotina are well known as protein and secondary metabolite producers. Various industries take advantage of these capabilities. However, the molecular biology of yeasts, i.e. Saccharomycotina and especially that of Saccharomyces cerevisiae, the baker's yeast, is much better known. In an effort to explain fungal phenotypes through their genotypes we have compared protein coding gene contents of Pezizomycotina and Saccharomycotina. Only biomass degradation and secondary metabolism related protein families seem to have expanded recently in Pezizomycotina. Of the protein families clearly diverged between Pezizomycotina and Saccharomycotina, those related to mitochondrial functions emerge as the most prominent. However, the primary metabolism as described in S. cerevisiae is largely conserved in all fungi. Apart from the known secondary metabolism, Pezizomycotina have pathways that could link secondary metabolism to primary metabolism and a wealth of undescribed enzymes. Previous studies of individual Pezizomycotina genomes have shown that regardless of the difference in production efficiency and diversity of secreted proteins, the content of the known secretion machinery genes in Pezizomycotina and Saccharomycotina appears very similar. Genome wide analysis of gene products is therefore needed to better understand the efficient secretion of Pezizomycotina. We have developed methods applicable to transcriptome analysis of non-sequenced organisms. TRAC (Transcriptional profiling with the aid of affinity capture) has been previously developed at VTT for fast, focused transcription analysis. We introduce a version of TRAC that allows more powerful signal amplification and multiplexing. We also present computational optimisations of transcriptome analysis of non-sequenced organism and TRAC analysis in general. Trichoderma reesei is one of the most commonly used Pezizomycotina in the protein production industry. In order to understand its secretion system better and find clues for improvement of its industrial performance, we have analysed its transcriptomic response to protein secretion stress conditions. In comparison to S. cerevisiae, the response of T. reesei appears different, but still impacts on the same cellular functions. We also discovered in T. reesei interesting similarities to mammalian protein secretion stress response. Together these findings highlight targets for more detailed studies.
Resumo:
We consider a modification of the three-dimensional Navier-Stokes equations and other hydrodynamical evolution equations with space-periodic initial conditions in which the usual Laplacian of the dissipation operator is replaced by an operator whose Fourier symbol grows exponentially as e(vertical bar k vertical bar/kd) at high wavenumbers vertical bar k vertical bar. Using estimates in suitable classes of analytic functions, we show that the solutions with initially finite energy become immediately entire in the space variables and that the Fourier coefficients decay faster than e-(C(k/kd) ln(vertical bar k vertical bar/kd)) for any C < 1/(2 ln 2). The same result holds for the one-dimensional Burgers equation with exponential dissipation but can be improved: heuristic arguments and very precise simulations, analyzed by the method of asymptotic extrapolation of van der Hoeven, indicate that the leading-order asymptotics is precisely of the above form with C = C-* = 1/ ln 2. The same behavior with a universal constant C-* is conjectured for the Navier-Stokes equations with exponential dissipation in any space dimension. This universality prevents the strong growth of intermittency in the far dissipation range which is obtained for ordinary Navier-Stokes turbulence. Possible applications to improved spectral simulations are briefly discussed.