879 resultados para Nondegenerate Parametric Oscillation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper analyses the influence of different atmospheric circulation indices on the multi-scalar drought variability across Europe by using the Standardized Precipitation Evapotranspiration Index (SPEI). The monthly circulation indices used in this study include the North Atlantic oscillation (NAO), the East Atlantic (EA), the Scandinavian (SCAN) and the East Atlantic-Western Russia (EA-WR) patterns, as well as the recently published Westerly Index (WI), defined as the persistence of westerly winds over the eastern north Atlantic region. The results indicate that European drought variability is better explained by the station-based NAO index and the WI than by any other combination of circulation indices. In northern and central Europe the variability of drought severity for different seasons and time-scales is strongly associated with the WI. On the contrary, the influence of the NAO on southern Europe droughts is stronger than that exerted by the WI. The correlation patterns of the NAO and WI with the SPEI show a spatial complementarity in shaping drought variability across Europe. Lagged correlations of the NAO and WI with the SPEI also indicate enough skill of both indices to anticipate drought severity several months in advance. As long as instrumental series of the NAO and WI are available, their combined use would allow inferring European drought variability for the last two centuries and improve the calibration and interpretation of paleoclimatic proxies associated with drought.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For climate risk management, cumulative distribution functions (CDFs) are an important source of information. They are ideally suited to compare probabilistic forecasts of primary (e.g. rainfall) or secondary data (e.g. crop yields). Summarised as CDFs, such forecasts allow an easy quantitative assessment of possible, alternative actions. Although the degree of uncertainty associated with CDF estimation could influence decisions, such information is rarely provided. Hence, we propose Cox-type regression models (CRMs) as a statistical framework for making inferences on CDFs in climate science. CRMs were designed for modelling probability distributions rather than just mean or median values. This makes the approach appealing for risk assessments where probabilities of extremes are often more informative than central tendency measures. CRMs are semi-parametric approaches originally designed for modelling risks arising from time-to-event data. Here we extend this original concept beyond time-dependent measures to other variables of interest. We also provide tools for estimating CDFs and surrounding uncertainty envelopes from empirical data. These statistical techniques intrinsically account for non-stationarities in time series that might be the result of climate change. This feature makes CRMs attractive candidates to investigate the feasibility of developing rigorous global circulation model (GCM)-CRM interfaces for provision of user-relevant forecasts. To demonstrate the applicability of CRMs, we present two examples for El Ni ? no/Southern Oscillation (ENSO)-based forecasts: the onset date of the wet season (Cairns, Australia) and total wet season rainfall (Quixeramobim, Brazil). This study emphasises the methodological aspects of CRMs rather than discussing merits or limitations of the ENSO-based predictors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the Southern Hemisphere (SH) polar region, satellite observations reveal a significant upper-mesosphere cooling and a lower-thermosphere warming during warm ENSO events in December. An opposite pattern is observed in the tropical mesopause region. The observed upper-mesosphere cooling agrees with a climate model simulation. Analysis of the simulation suggests that enhanced planetary wave (PW) dissipation in the Northern Hemisphere (NH) high-latitude stratosphere during El Nino strengthens the Brewer-Dobson circulation and cools the equatorial stratosphere. This increases the magnitude of the SH stratosphere meridional temperature gradient and thus causes the anomalous stratospheric easterly zonal wind and early breakdown of the SH stratospheric polar vortex. The resulting perturbation to gravity wave (GW) filtering causes anomalous SH mesospheric eastward GW forcing and polar upwelling and cooling. In addition, constructive inference of ENSO and quasi-biennial oscillation (QBO) could lead to stronger stratospheric easterly zonal wind anomalies at the SH high latitudes in November and December and early breakdown of the SH stratospheric polar vortex during warm ENSO events in the easterly QBO phase (defined by the equatorial zonal wind at similar to 25 hPa). This would in turn cause much more SH mesospheric eastward GW forcing and much colder polar temperatures, and hence it would induce an early onset time of SH summer polar mesospheric clouds (PMCs). The opposite mechanism occurs during cold ENSO events in the westerly QBO phase. This implies that ENSO together with QBO could significantly modulate the breakdown time of SH stratospheric polar vortex and the onset time of SH PMC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract The development of innovative carbon-based materials can be greatly facilitated by molecular modeling techniques. Although the Reax Force Field (ReaxFF) can be used to simulate the chemical behavior of carbon-based systems, the simulation settings required for accurate predictions have not been fully explored. Using the ReaxFF, molecular dynamics (MD) simulations are used to simulate the chemical behavior of pure carbon and hydrocarbon reactive gases that are involved in the formation of carbon structures such as graphite, buckyballs, amorphous carbon, and carbon nanotubes. It is determined that the maximum simulation time step that can be used in MD simulations with the ReaxFF is dependent on the simulated temperature and selected parameter set, as are the predicted reaction rates. It is also determined that different carbon-based reactive gases react at different rates, and that the predicted equilibrium structures are generally the same for the different ReaxFF parameter sets, except in the case of the predicted formation of large graphitic structures with the Chenoweth parameter set under specific conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Beyond the natural proteome, high-throughput mutagenesis offers the protein engineer an opportunity to “tweak” the wild-type activity of a protein to create a recombinant protein with required attributes. Of the various approaches available, saturation mutagenesis is one of the core techniques employed by protein engineers and in recent times, nondegenerate saturation mutagenesis is emerging as the approach of choice. This review compares the current methodologies available for conducting nondegenerate saturation mutagenesis with traditional, degenerate saturation and briefly outlines the options available for screening the resulting libraries, to discover a novel protein with the required activity and/or specificity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents a computational parametric analysis of DME steam reforming in a large scale Circulating Fluidized Bed (CFB) reactor. The Computational Fluid Dynamic (CFD) model used, which is based on Eulerian-Eulerian dispersed flow, has been developed and validated in Part I of this study [1]. The effect of the reactor inlet configuration, gas residence time, inlet temperature and steam to DME ratio on the overall reactor performance and products have all been investigated. The results have shown that the use of double sided solid feeding system remarkable improvement in the flow uniformity, but with limited effect on the reactions and products. The temperature has been found to play a dominant role in increasing the DME conversion and the hydrogen yield. According to the parametric analysis, it is recommended to run the CFB reactor at around 300 °C inlet temperature, 5.5 steam to DME molar ratio, 4 s gas residence time and 37,104 ml gcat -1 h-1 space velocity. At these conditions, the DME conversion and hydrogen molar concentration in the product gas were both found to be around 80%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Principal Topic A small firm is unlikely to possess internally the full range of knowledge and skills that it requires or could benefit from for the development of its business. The ability to acquire suitable external expertise - defined as knowledge or competence that is rare in the firm and acquired from the outside - when needed thus becomes a competitive factor in itself. Access to external expertise enables the firm to focus on its core competencies and removes the necessity to internalize every skill and competence. However, research on how small firms access external expertise is still scarce. The present study contributes to this under-developed discussion by analysing the role of trust and strong ties in the small firm's selection and evaluation of sources of external expertise (henceforth referred to as the 'business advisor' or 'advisor'). Granovetter (1973, 1361) defines the strength of a network tie as 'a (probably linear) combination of the amount of time, the emotional intensity, the intimacy (mutual confiding) and the reciprocal services which characterize the tie'. Strong ties in the context of the present investigation refer to sources of external expertise who are well known to the owner-manager, and who may be either informal (e.g., family, friends) or professional advisors (e.g., consultants, enterprise support officers, accountants or solicitors). Previous research has suggested that strong and weak ties have different fortes and the choice of business advisors could thus be critical to business performance) While previous research results suggest that small businesses favour previously well known business advisors, prior studies have also pointed out that an excessive reliance on a network of well known actors might hamper business development, as the range of expertise available through strong ties is limited. But are owner-managers of small businesses aware of this limitation and does it matter to them? Or does working with a well-known advisor compensate for it? Hence, our research model first examines the impact of the strength of tie on the business advisor's perceived performance. Next, we ask what encourages a small business owner-manager to seek advice from a strong tie. A recent exploratory study by Welter and Kautonen (2005) drew attention to the central role of trust in this context. However, while their study found support for the general proposition that trust plays an important role in the choice of advisors, how trust and its different dimensions actually affect this choice remained ambiguous. The present paper develops this discussion by considering the impact of the different dimensions of perceived trustworthiness, defined as benevolence, integrity and ability, on the strength of tie. Further, we suggest that the dimensions of perceived trustworthiness relevant in the choice of a strong tie vary between professional and informal advisors. Methodology/Key Propositions Our propositions are examined empirically based on survey data comprising 153 Finnish small businesses. The data are analysed utilizing the partial least squares (PLS) approach to structural equation modelling with SmartPLS 2.0. Being non-parametric, the PLS algorithm is particularly well-suited to analysing small datasets with non-normally distributed variables. Results and Implications The path model shows that the stronger the tie, the more positively the advisor's performance is perceived. Hypothesis 1, that strong ties will be associated with higher perceptions of performance is clearly supported. Benevolence is clearly the most significant predictor of the choice of a strong tie for external expertise. While ability also reaches a moderate level of statistical significance, integrity does not have a statistically significant impact on the choice of a strong tie. Hence, we found support for two out of three independent variables included in Hypothesis 2. Path coefficients differed between the professional and informal advisor subsamples. The results of the exploratory group comparison show that Hypothesis 3a regarding ability being associated with strong ties more pronouncedly when choosing a professional advisor was not supported. Hypothesis 3b arguing that benevolence is more strongly associated with strong ties in the context of choosing an informal advisor received some support because the path coefficient in the informal advisor subsample was much larger than in the professional advisor subsample. Hypothesis 3c postulating that integrity would be more strongly associated with strong ties in the choice of a professional advisor was supported. Integrity is the most important dimension of trustworthiness in this context. However, integrity is of no concern, or even negative, when using strong ties to choose an informal advisor. The findings of this study have practical relevance to the enterprise support community. First of all, given that the strength of tie has a significant positive impact on the advisor's perceived performance, this implies that small business owners appreciate working with advisors in long-term relationships. Therefore, advisors are well advised to invest into relationship building and maintenance in their work with small firms. Secondly, the results show that, especially in the context of professional advisors, the advisor's perceived integrity and benevolence weigh more than ability. This again emphasizes the need to invest time and effort into building a personal relationship with the owner-manager, rather than merely maintaining a professional image and credentials. Finally, this study demonstrates that the dimensions of perceived trustworthiness are orthogonal with different effects on the strength of tie and ultimately perceived performance. This means that entrepreneurs and advisors should consider the specific dimensions of ability, benevolence and integrity, rather than rely on general perceptions of trustworthiness in their advice relationships.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The early stages of the building design process are when the most far reaching decisions are made regarding the configuration of the proposed project. This paper examines methods of providing decision support to building designers across multiple disciplines during the early stage of design. The level of detail supported is at the massing study stage where the basic envelope of the project is being defined. The block outlines on the building envelope are sliced into floors. Within a floor the only spatial divisions supported are the “user” space and the building core. The building core includes vertical transportation systems, emergency egress and vertical duct runs. The current focus of the project described in the paper is multi-storey mixed use office/residential buildings with car parking. This is a common type of building in redevelopment projects within and adjacent to the central business districts of major Australian cities. The key design parameters for system selection across the major systems in multi-storey building projects - architectural, structural, HVAC, vertical transportation, electrical distribution, fire protection, hydraulics and cost – are examined. These have been identified through literature research and discussions with building designers from various disciplines. This information is being encoded in decision support tools. The decision support tools communicate through a shared database to ensure that the relevant information is shared across all of the disciplines. An internal data model has been developed to support the very early design phase and the high level system descriptions required. A mapping to IFC 2x2 has also been defined to ensure that this early information is available at later stages of the design process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modern Engineering Asset Management (EAM) requires the accurate assessment of current and the prediction of future asset health condition. Suitable mathematical models that are capable of predicting Time-to-Failure (TTF) and the probability of failure in future time are essential. In traditional reliability models, the lifetime of assets is estimated using failure time data. However, in most real-life situations and industry applications, the lifetime of assets is influenced by different risk factors, which are called covariates. The fundamental notion in reliability theory is the failure time of a system and its covariates. These covariates change stochastically and may influence and/or indicate the failure time. Research shows that many statistical models have been developed to estimate the hazard of assets or individuals with covariates. An extensive amount of literature on hazard models with covariates (also termed covariate models), including theory and practical applications, has emerged. This paper is a state-of-the-art review of the existing literature on these covariate models in both the reliability and biomedical fields. One of the major purposes of this expository paper is to synthesise these models from both industrial reliability and biomedical fields and then contextually group them into non-parametric and semi-parametric models. Comments on their merits and limitations are also presented. Another main purpose of this paper is to comprehensively review and summarise the current research on the development of the covariate models so as to facilitate the application of more covariate modelling techniques into prognostics and asset health management.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modern Engineering Asset Management (EAM) requires the accurate assessment of current and the prediction of future asset health condition. Appropriate mathematical models that are capable of estimating times to failures and the probability of failures in the future are essential in EAM. In most real-life situations, the lifetime of an engineering asset is influenced and/or indicated by different factors that are termed as covariates. Hazard prediction with covariates is an elemental notion in the reliability theory to estimate the tendency of an engineering asset failing instantaneously beyond the current time assumed that it has already survived up to the current time. A number of statistical covariate-based hazard models have been developed. However, none of them has explicitly incorporated both external and internal covariates into one model. This paper introduces a novel covariate-based hazard model to address this concern. This model is named as Explicit Hazard Model (EHM). Both the semi-parametric and non-parametric forms of this model are presented in the paper. The major purpose of this paper is to illustrate the theoretical development of EHM. Due to page limitation, a case study with the reliability field data is presented in the applications part of this study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hazard and reliability prediction of an engineering asset is one of the significant fields of research in Engineering Asset Health Management (EAHM). In real-life situations where an engineering asset operates under dynamic operational and environmental conditions, the lifetime of an engineering asset can be influenced and/or indicated by different factors that are termed as covariates. The Explicit Hazard Model (EHM) as a covariate-based hazard model is a new approach for hazard prediction which explicitly incorporates both internal and external covariates into one model. EHM is an appropriate model to use in the analysis of lifetime data in presence of both internal and external covariates in the reliability field. This paper presents applications of the methodology which is introduced and illustrated in the theory part of this study. In this paper, the semi-parametric EHM is applied to a case study so as to predict the hazard and reliability of resistance elements on a Resistance Corrosion Sensor Board (RCSB).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Classical negotiation models are weak in supporting real-world business negotiations because these models often assume that the preference information of each negotiator is made public. Although parametric learning methods have been proposed for acquiring the preference information of negotiation opponents, these methods suffer from the strong assumptions about the specific utility function and negotiation mechanism employed by the opponents. Consequently, it is difficult to apply these learning methods to the heterogeneous negotiation agents participating in e‑marketplaces. This paper illustrates the design, development, and evaluation of a nonparametric negotiation knowledge discovery method which is underpinned by the well-known Bayesian learning paradigm. According to our empirical testing, the novel knowledge discovery method can speed up the negotiation processes while maintaining negotiation effectiveness. To the best of our knowledge, this is the first nonparametric negotiation knowledge discovery method developed and evaluated in the context of multi-issue bargaining over e‑marketplaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A few studies examined interactive effects between air pollution and temperature on health outcomes. This study is to examine if temperature modified effects of ozone and cardiovascular mortality in 95 large US cities. A nonparametric and a parametric regression models were separately used to explore interactive effects of temperature and ozone on cardiovascular mortality during May and October, 1987-2000. A Bayesian meta-analysis was used to pool estimates. Both models illustrate that temperature enhanced the ozone effects on mortality in the northern region, but obviously in the southern region. A 10-ppb increment in ozone was associated with 0.41 % (95% posterior interval (PI): -0.19 %, 0.93 %), 0.27 % (95% PI: -0.44 %, 0.87 %) and 1.68 % (95% PI: 0.07 %, 3.26 %) increases in daily cardiovascular mortality corresponding to low, moderate and high levels of temperature, respectively. We concluded that temperature modified effects of ozone, particularly in the northern region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cold-formed steel members have been widely used in residential, industrial and commercial buildings as primary load bearing structural elements and non-load bearing structural elements (partitions) due to their advantages such as higher strength to weight ratio over the other structural materials such as hot-rolled steel, timber and concrete. Cold-formed steel members are often made from thin steel sheets and hence they are more susceptible to various buckling modes. Generally short columns are susceptible to local or distortional buckling while long columns to flexural or flexural-torsional buckling. Fire safety design of building structures is an essential requirement as fire events can cause loss of property and lives. Therefore it is essential to understand the fire performance of light gauge cold-formed steel structures under fire conditions. The buckling behaviour of cold-formed steel compression members under fire conditions is not well investigated yet and hence there is a lack of knowledge on the fire performance of cold-formed steel compression members. Current cold-formed steel design standards do not provide adequate design guidelines for the fire design of cold-formed steel compression members. Therefore a research project based on extensive experimental and numerical studies was undertaken at the Queensland University of Technology to investigate the buckling behaviour of light gauge cold-formed steel compression members under simulated fire conditions. As the first phase of this research, a detailed review was undertaken on the mechanical properties of light gauge cold-formed steels at elevated temperatures and the most reliable predictive models for mechanical properties and stress-strain models based on detailed experimental investigations were identified. Their accuracy was verified experimentally by carrying out a series of tensile coupon tests at ambient and elevated temperatures. As the second phase of this research, local buckling behaviour was investigated based on the experimental and numerical investigations at ambient and elevated temperatures. First a series of 91 local buckling tests was carried out at ambient and elevated temperatures on lipped and unlipped channels made of G250-0.95, G550-0.95, G250-1.95 and G450-1.90 cold-formed steels. Suitable finite element models were then developed to simulate the experimental conditions. These models were converted to ideal finite element models to undertake detailed parametric study. Finally all the ultimate load capacity results for local buckling were compared with the available design methods based on AS/NZS 4600, BS 5950 Part 5, Eurocode 3 Part 1.2 and the direct strength method (DSM), and suitable recommendations were made for the fire design of cold-formed steel compression members subject to local buckling. As the third phase of this research, flexural-torsional buckling behaviour was investigated experimentally and numerically. Two series of 39 flexural-torsional buckling tests were undertaken at ambient and elevated temperatures. The first series consisted 2800 mm long columns of G550-0.95, G250-1.95 and G450-1.90 cold-formed steel lipped channel columns while the second series contained 1800 mm long lipped channel columns of the same steel thickness and strength grades. All the experimental tests were simulated using a suitable finite element model, and the same model was used in a detailed parametric study following validation. Based on the comparison of results from the experimental and parametric studies with the available design methods, suitable design recommendations were made. This thesis presents a detailed description of the experimental and numerical studies undertaken on the mechanical properties and the local and flexural-torsional bucking behaviour of cold-formed steel compression member at ambient and elevated temperatures. It also describes the currently available ambient temperature design methods and their accuracy when used for fire design with appropriately reduced mechanical properties at elevated temperatures. Available fire design methods are also included and their accuracy in predicting the ultimate load capacity at elevated temperatures was investigated. This research has shown that the current ambient temperature design methods are capable of predicting the local and flexural-torsional buckling capacities of cold-formed steel compression members at elevated temperatures with the use of reduced mechanical properties. However, the elevated temperature design method in Eurocode 3 Part 1.2 is overly conservative and hence unsuitable, particularly in the case of flexural-torsional buckling at elevated temperatures.