991 resultados para Newborn infants - Metabolism
Resumo:
Levels of the enzymes that produce wound response mediators have to be controlled tightly in unwounded tissues. The Arabidopsis (Arabidopsis thaliana) fatty acid oxygenation up-regulated8 (fou8) mutant catalyzes high rates of alpha -linolenic acid oxygenation and has higher than wild-type levels of the alpha -linolenic acid-derived wound response mediator jasmonic acid (JA) in undamaged leaves. fou8 produces a null allele in the gene SAL1 (also known as FIERY1 or FRY1). Overexpression of the wild-type gene product had the opposite effect of the null allele, suggesting a regulatory role of SAL1 acting in JA synthesis. The biochemical phenotypes in fou8 were complemented when the yeast (Saccharomyces cerevisiae) sulfur metabolism 3'(2'), 5'-bisphosphate nucleotidase MET22 was targeted to chloroplasts in fou8. The data are consistent with a role of SAL1 in the chloroplast-localized dephosphorylation of 3'-phospho-5'-adenosine phosphosulfate to 5'-adenosine phosphosulfate or in a closely related reaction (e.g. 3',5'-bisphosphate dephosphorylation). Furthermore, the fou8 phenotype was genetically suppressed in a triple mutant (fou8 apk1 apk2) affecting chloroplastic 3'-phospho-5'-adenosine phosphosulfate synthesis. These results show that a nucleotide component of the sulfur futile cycle regulates early steps of JA production and basal JA levels.
Resumo:
Akt/protein kinase B (PKB) plays a critical role in the regulation of metabolism, transcription, cell migration, cell cycle progression, and cell survival. The existence of viable knockout mice for each of the three isoforms suggests functional redundancy. We generated mice with combined mutant alleles of Akt1 and Akt3 to study their effects on mouse development. Here we show that Akt1-/- Akt3+/- mice display multiple defects in the thymus, heart, and skin and die within several days after birth, while Akt1+/- Akt3-/- mice survive normally. Double knockout (Akt1-/-) Akt3-/-) causes embryonic lethality at around embryonic days 11 and 12, with more severe developmental defects in the cardiovascular and nervous systems. Increased apoptosis was found in the developing brain of double mutant embryos. These data indicate that the Akt1 gene is more essential than Akt3 for embryonic development and survival but that both are required for embryo development. Our results indicate isoform-specific and dosage-dependent effects of Akt on animal survival and development.
Resumo:
Exome sequencing of an individual with congenital cataracts, hypertrophic cardiomyopathy, skeletal myopathy, and lactic acidosis, all typical symptoms of Sengers syndrome, discovered two nonsense mutations in the gene encoding mitochondrial acylglycerol kinase (AGK). Mutation screening of AGK in further individuals with congenital cataracts and cardiomyopathy identified numerous loss-of-function mutations in an additional eight families, confirming the causal nature of AGK deficiency in Sengers syndrome. The loss of AGK led to a decrease of the adenine nucleotide translocator in the inner mitochondrial membrane in muscle, consistent with a role of AGK in driving the assembly of the translocator as a result of its effects on phospholipid metabolism in mitochondria.
Resumo:
BACKGROUND: Progress in perinatal medicine has made it possible to increase the survival of very or extremely low birthweight infants. Developmental outcomes of surviving preterm infants have been analysed at the paediatric, neurological, cognitive, and behavioural levels, and a series of perinatal and environmental risk factors have been identified. The threat to the child's survival and invasive medical procedures can be very traumatic for the parents. Few empirical reports have considered post-traumatic stress reactions of the parents as a possible variable affecting a child's outcome. Some studies have described sleeping and eating problems as related to prematurity; these problems are especially critical for the parents. OBJECTIVE: To examine the effects of post-traumatic reactions of the parents on sleeping and eating problems of the children. DESIGN: Fifty families with a premature infant (25-33 gestation weeks) and a control group of 25 families with a full term infant participated in the study. Perinatal risks were evaluated during the hospital stay. Mothers and fathers were interviewed when their children were 18 months old about the child's problems and filled in a perinatal post-traumatic stress disorder questionnaire (PPQ). RESULTS: The severity of the perinatal risks only partly predicts a child's problems. Independently of the perinatal risks, the intensity of the post-traumatic reactions of the parents is an important predictor of these problems. CONCLUSIONS: These findings suggest that the parental response to premature birth mediates the risks of later adverse outcomes. Preventive intervention should be promoted.
Resumo:
The effect of intravenous (i.v.) torasemide on diuresis and renal function was evaluated in three groups of normoxemic, 5- to 10-day-old, newborn New Zealand White rabbits. The animals of group 1 received 0.2 mg/kg of torasemide i.v., whereas in group 2 an i.v. dose of 1.0 mg/kg was given. The third group of animals received a bolus i.v. dose of 1.0 mg/kg torasemide with continuous i.v. replacement of estimated urinary fluid and electrolyte losses. Torasemide proved to be an effective, potassium-sparing diuretic, without significant effect on glomerular filtration rate (GFR). Renal blood flow (RBF) fell and the renal vascular resistance (RVR) rose in all three groups of animals, although the rise in RVR in group 3 was not significant. These changes in renal hemodynamics were most pronounced in the animals of group 2 and are probably secondary to torasemide-induced hypovolemia (2.8% loss of body weight) and accompanying humoral reactions, such as an increase in angiotensin II (not measured). When the latter is prevented by simultaneous re-infusion of an electrolyte solution (group 3), replacing urinary losses, GFR increases and the changes in RBF and RVR are blunted. We conclude that torasemide is an effective, potassium-sparing diuretic in newborn rabbits. No evidence was found for a vasodilatory action of the drug.
Resumo:
Bone homeostasis is a well-balanced process that is largely dependent on the contribution of both bone-forming osteoblasts and bone-resorbing osteoclasts. A new study (Wan et al., 2007) suggests a previously unsuspected role for the transcription factor PPARgamma in promoting bone progenitors to the osteoclastic lineage.
Resumo:
A compilation of digital resources for information and play activities for hospitalized children and their families. For each resource, we present an outline of the organization that promotes it and its objectives.
Resumo:
Les "Pautas para bibliotecas al servicio de pacientes de hospital, ancianos y discapacitados en centros de atención de larga duración" elaborades per l'IFLA són el marc normatiu de les biblioteques per a pacients. La seva existència, però, no garanteix el seu compliment; és per això que trobem realitats ben diverses, des dels hospitals que les reinterpreten i adeqüen a les seves necessitats i mitjans fins als que les ignoren o les desconeixen. En aquesta comunicació farem un recorregut per diverses alternatives o interpretacions als espais hospitalaris dedicats tant a l'oci com a la informació dels pacients en un context internacional. Es conclou que la biblioteca per a pacients és un servei en si mateix i es reivindica com un servei més al qual el malalt té dret.
Resumo:
OBJECTIVE. Data on human natality, stillbirth and perinatal mortality from Switzerland (1979-1987), available in four birthweight categories, are reexamined to assess any about-weekly (circaseptan) and changes in about-daily (circadian) patterns in central Europe over a century and a halfDESIGN. Retrospective analyses on archived data.SETTING. Federal Office of Statistics for Switzerland.RESULTS. In addition to prominent circadians, weekly patterns are also documented.CONCLUSION. Exogenous variations, prominent in early extrauterine life, such as changes of scheduling in obstetrics, may contribute to circadian and cireaseptan natality patterns. Information on these patterns serves in the optimization of neonatal care. Partly endogenous, partly physical environmental aspects, at least of about-weekly patterns, remain to be elucidated in series consisting exclusively of spontaneous parturitions.
Resumo:
BACKGROUND: Cytoskeletal changes after longterm exposure to ethanol have been described in a number of cell types in adult rat and humans. These changes can play a key part in the impairment of nutrient assimilation and postnatal growth retardation after prenatal damage of the intestinal epithelium produced by ethanol intake. AIMS: To determine, in the newborn rat, which cytoskeletal proteins are affected by longterm ethanol exposure in utero and to what extent. ANIMALS: The offspring of two experimental groups of female Wistar rats: ethanol treated group receiving up to 25% (w/v) of ethanol in the drinking fluid and control group receiving water as drinking fluid. METHODS: Single and double electron microscopy immunolocalisation and label density estimation of cytoskeletal proteins on sections of proximal small intestine incubated with monoclonal antibodies against actin, alpha-tubulin, cytokeratin (polypeptides 1, 5, 6, 7, 8, 10, 11, and 18), and with a polyclonal antibody anti-beta 1,4-galactosyl transferase as trans golgi (TG) or trans golgi network (TGN) marker, or both. SDS-PAGE technique was also performed on cytoskeletal enriched fractions from small intestine. Western blotting analysis was carried out by incubation with the same antibodies used for immunolocalisation. RESULTS: Intestinal epithelium of newborn rats from the ethanol treated group showed an overexpression of cytoskeletal polypeptides ranging from 39 to 54 kDa, affecting actin and some cytokeratins, but not tubulin. Furthermore, a cytokeratin related polypeptide of 28-29 kDa was identified together with an increase in free ubiquitin in the same group. It was noteworthy that actin and cytokeratin were abnormally located in the TG or the TGN, or both. CONCLUSIONS: Longterm exposure to ethanol in utero causes severe dysfunction in the cytoskeleton of the developing intestinal epithelium. Actin and cytokeratins, which are involved in cytoskeleton anchoring to plasma membrane and cell adhesion, are particularly affected, showing overexpression, impaired proteolysis, and mislocalisation.
Resumo:
In this study, we show that an inhibitor of sphingolipid biosynthesis, d,l-threo-1-phenyl-2- decanoylamino-3-morpholino-1-propanol (PDMP), inhibits brefeldin A (BFA)-induced retrograde membrane transport from Golgi to endoplasmic reticulum (ER). If BFA treatment was combined with or preceded by PDMP administration to cells, disappearance of discrete Golgi structures did not occur. However, when BFA was allowed to exert its effect before PDMP addition, PDMP could not ¿rescue¿ the Golgi compartment. Evidence is presented showing that this action of PDMP is indirect, which means that the direct target is not sphingolipid metabolism at the Golgi apparatus. A fluorescent analogue of PDMP, 6-(N-[7-nitro-2,1,3-benzoxadiazol-4-yl]amino)hexanoyl-PDMP (C6-NBD-PDMP), did not localize in the Golgi apparatus. Moreover, the effect of PDMP on membrane flow did not correlate with impaired C6-NBD-sphingomyelin biosynthesis and was not mimicked by exogenous C6-ceramide addition or counteracted by exogenous C6-glucosylceramide addition. On the other hand, the PDMP effect was mimicked by the multidrug resistance protein inhibitor MK571. The effect of PDMP on membrane transport correlated with modulation of calcium homeostasis, which occurred in a similar concentration range. PDMP released calcium from at least two independent calcium stores and blocked calcium influx induced by either extracellular ATP or thapsigargin. Thus, the biological effects of PDMP revealed a relation between three important physiological processes of multidrug resistance, calcium homeostasis, and membrane flow in the ER/ Golgi system.
Resumo:
BACKGROUND: Cytoskeletal changes after longterm exposure to ethanol have been described in a number of cell types in adult rat and humans. These changes can play a key part in the impairment of nutrient assimilation and postnatal growth retardation after prenatal damage of the intestinal epithelium produced by ethanol intake. AIMS: To determine, in the newborn rat, which cytoskeletal proteins are affected by longterm ethanol exposure in utero and to what extent. ANIMALS: The offspring of two experimental groups of female Wistar rats: ethanol treated group receiving up to 25% (w/v) of ethanol in the drinking fluid and control group receiving water as drinking fluid. METHODS: Single and double electron microscopy immunolocalisation and label density estimation of cytoskeletal proteins on sections of proximal small intestine incubated with monoclonal antibodies against actin, alpha-tubulin, cytokeratin (polypeptides 1, 5, 6, 7, 8, 10, 11, and 18), and with a polyclonal antibody anti-beta 1,4-galactosyl transferase as trans golgi (TG) or trans golgi network (TGN) marker, or both. SDS-PAGE technique was also performed on cytoskeletal enriched fractions from small intestine. Western blotting analysis was carried out by incubation with the same antibodies used for immunolocalisation. RESULTS: Intestinal epithelium of newborn rats from the ethanol treated group showed an overexpression of cytoskeletal polypeptides ranging from 39 to 54 kDa, affecting actin and some cytokeratins, but not tubulin. Furthermore, a cytokeratin related polypeptide of 28-29 kDa was identified together with an increase in free ubiquitin in the same group. It was noteworthy that actin and cytokeratin were abnormally located in the TG or the TGN, or both. CONCLUSIONS: Longterm exposure to ethanol in utero causes severe dysfunction in the cytoskeleton of the developing intestinal epithelium. Actin and cytokeratins, which are involved in cytoskeleton anchoring to plasma membrane and cell adhesion, are particularly affected, showing overexpression, impaired proteolysis, and mislocalisation.
Resumo:
Development of new infant formulas aims to replicate the benefits of breast milk. One benefit of breast milk over infant formulas is greater gastrointestinal comfort. We compared indicators of gastrointestinal comfort in infants fed a whey-predominant formula containing long-chain polyunsaturated fatty acids, galacto-oligo-saccharides and fructo-oligosaccharides, and infants fed a control casein-predominant formula without additional ingredients. The single-centre, prospective, double-blind, controlled trial randomly assigned healthy, full-term infants (n=144) to receive exclusively either experimental or control formula from 30 days to 4 months of age. A group of exclusively breast-fed infants served as reference (n=80). At 1, 2, 3, and 4 months, infants' growth parameters were measured and their health assessed. Parents recorded frequency and physical characteristics of infants' stool, frequency of regurgitation, vomiting, crying and colic. At 2-months, gastric emptying (ultrasound) and intestinal transit time (H2 breath test) were measured, and stool samples collected for bacterial analysis. Compared to the control (n=69), fewer of the experimental group (n=67) had hard stools (0.7 vs 7.5%, p<0.001) and more had soft stools (90.8 vs 82.3%, p<0.05). Also compared to the control, the experimental group's stool microbiota composition (mean % bifidobacteria: 78.1 (experimental, n=17), 63.7 (control, n=16), 74.3 (breast-fed, n=20), gastric transit times (59.6 (experimental, n=53), 61.4 (control, n=62), 55.9 (breast-fed, n=67) minutes) and intestinal transit times (data not shown) were closer to that of the breast-fed group. Growth parameter values were similar for all groups. The data suggest that, in infants, the prebiotic-containing whey-based formula provides superior gastrointestinal comfort than a control formula.
Resumo:
Rationale The pharmacological actions of most antidepressants are ascribed to the modulation of serotonergic and/or noradrenergic transmission in the brain. During therapeutic treatment for major depression, fluoxetine, one of the most commonly prescribed selective serotonin reuptake inhibitor (SSRI) antidepressants, accumulates in the brain, suggesting that fluoxetine may interact with additional targets. In this context, there is increasing evidence that astrocytes are involved in the pathophysiology of major depression.Objectives The aim of this study was to examine the effects of fluoxetine on the expression of neurotrophic/growth factors that have antidepressant properties and on glucose metabolism in cultured cortical astrocytes.Results Treatment of astrocytes with fluoxetine and paroxetine, another SSRI antidepressant, upregulated brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF), and VGF mRNA expression. In contrast, the tricyclic antidepressants desipramine and imipramine did not affect the expression of these neurotrophic/growth factors. Analysis of the effects of fluoxetine on glucose metabolism revealed that fluoxetine reduces glycogen levels and increases glucose utilization and lactate release by astrocytes. Similar data were obtained with paroxetine, whereas imipramine and desipramine did not regulate glucose metabolism in this glial cell population. Our results also indicate that the effects of fluoxetine and paroxetine on glucose utilization, lactate release, and expression of BDNF, VEGF, and VGF are not mediated by serotonin-dependent mechanisms.Conclusions These data suggest that, by increasing the expression of specific astrocyte-derived neurotrophic factors and lactate release from astrocytes, fluoxetine may contribute to normalize the trophic and metabolic support to neurons in major depression.