914 resultados para Neoplasm Metastasis


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Aberrant DNA methylation has been implicated as a key survival mechanism in cancer, whereby promoter hypermethylation silences genes essential for many cellular processes including apoptosis. Limited data is available on the methylation profile of apoptotic genes in prostate cancer (CaP). The aim of this study was to profile methylation of apoptotic-related genes in CaP using denaturing high performance liquid chromatography (DHPLC).

METHODS: Based on an in silico selection process, 13 genes were screened for methylation in CaP cell lines using DHPLC. Quantitative methylation specific PCR was employed to determine methylation levels in prostate tissue specimens (n = 135), representing tumor, histologically benign prostate, high-grade prostatic intraepithelial neoplasia and benign prostatic hyperplasia. Gene expression was measured by QRT-PCR in cell lines and tissue specimens.

RESULTS: The promoters of BIK, BNIP3, cFLIP, TMS1, DCR1, DCR2, and CDKN2A appeared fully or partially methylated in a number of malignant cell lines. This is the first report of aberrant methylation of BIK, BNIP3, and cFLIP in CaP. Quantitative methylation analysis in prostate tissues identified 5 genes (BNIP3, CDKN2A, DCR1, DCR2 and TMS1) which were frequently methylated in tumors but were unmethylated in 100% of benign tissues. Furthermore, 69% of tumors were methylated in at least one of the five-gene panel. In the case of all genes, except BNIP3, promoter hypermethylation was associated with concurrent downregulation of gene expression.

CONCLUSION: Future examination of this "CaP apoptotic methylation signature" in a larger cohort of patients is justified to further evaluate its value as a diagnostic and prognostic marker.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Bcr-Abl kinase inhibitor, imatinib mesylate, is the front line treatment for chronic myeloid leukaemia (CML), but the emergence of imatinib resistance has led to the search for alternative drug treatments and the examination of combination therapies to overcome imatinib resistance. The pro-apoptotic PBOX compounds are a recently developed novel series of microtubule targeting agents (MTAs) that depolymerise tubulin. Recent data demonstrating enhanced MTA-induced tumour cell apoptosis upon combination with the cyclin dependent kinase (CDK)-1 inhibitor flavopiridol prompted us to examine whether this compound could similarly enhance the effect of the PBOX compounds. We thus characterised the apoptotic and cell cycle events associated with combination therapy of the PBOX compounds and flavopiridol and results showed a sequence dependent, synergistic enhancement of apoptosis in CML cells including those expressing the imatinib-resistant T315I mutant. Flavopiridol reduced the number of polyploid cells formed in response to PBOX treatment but only to a small extent, suggesting that inhibition of endoreplication was unlikely to play a major role in the mechanism by which flavopiridol synergistically enhanced PBOX-induced apoptosis. The addition of flavopiridol following PBOX-6 treatment did however result in an accelerated exit from the G2/M transition accompanied by an enhanced downregulation and deactivation of the CDK1/cyclin B1 complex and an enhanced degradation of the inhibitor of apoptosis protein (IAP) survivin. In conclusion, results from this study highlight the potential of these novel series of PBOX compounds, alone or in sequential combination with flavopiridol, as an effective therapy against CML.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: The development of multi-drug resistance (MDR) due to the expression of members of the ATP binding cassette (ABC) transporter family is a major obstacle in cancer treatment. The broad range of substrate specificities associated with these transporters leads to the efflux of many anti-cancer drugs from tumour cells. Therefore, the development of new chemotherapeutic agents that are not substrates of these transporters is important. We have recently demonstrated that some members of a novel series of pyrrolo-1,5-benzoxazepine (PBOX) compounds are microtubule-depolymerising agents that potently induce apoptosis in several cancer cell lines and impair growth of mouse breast tumours. The aim of this current study was to establish whether PBOXs were capable of inducing apoptosis in cancer cells expressing either P-glycoprotein or breast cancer resistance protein (BCRP), two of the main ABC transporters associated with MDR.

METHODS: We performed in vitro studies to assess the effects of PBOXs on cell proliferation, cell cycle and apoptosis in human cancer cell lines and their drug-resistant substrains expressing either P-glycoprotein or BCRP. In addition, we performed a preliminary molecular docking study to examine interactions between PBOXs and P-glycoprotein.

RESULTS: We established that three representative PBOXs, PBOX-6, -15 and -16 were capable of inducing apoptosis in drug-resistant HL60-MDR1 cells (expressing P-glycoprotein) and HL60-ABCG2 cells (expressing BCRP) with similar potencies as in parental human promyelocytic leukaemia HL60 cells. Likewise, resistance to PBOX-6 and -16 was not evident in P-glycoprotein-expressing A2780-ADR cells in comparison with parent human ovarian carcinoma A2780 cells. Finally, we deduced by molecular docking that PBOX-6 is not likely to form favourable interactions with the substrate binding site of P-glycoprotein.

CONCLUSION: Our results suggest that pro-apoptotic PBOX compounds may be potential candidates for the treatment of P-glycoprotein- or BCRP-associated MDR cancers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The molecular basis for the progression of breast and prostate cancer from hormone dependent to hormone independent disease remains a critical issue in the management of these two cancers. The DNA mismatch repair system is integral to the maintenance of genomic stability and suppression of tumorigenesis. No firm consensus exists regarding the implications of mismatch repair (MMR) deficiencies in the development of breast or prostate cancer. However, recent studies have reported an association between mismatch repair deficiency and loss of specific hormone receptors, inferring a potential role for mismatch repair deficiency in this transition. An updated review of the experimental data supporting or contradicting the involvement of MMR defects in the development and progression of breast and prostate cancer will be provided with particular emphasis on their implications in the transition to hormone independence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low-dose hyper-radiosensitivity (HRS) is the phenomenon whereby cells exposed to radiation doses of less than approximately 0.5 Gy exhibit increased cell killing relative to that predicted from back-extrapolating high-dose survival data using a linear-quadratic model. While the exact mechanism remains to be elucidated, the involvement of several molecular repair pathways has been documented. These processes in turn are also associated with the response of cells to O6-methylguanine (O6MeG) lesions. We propose a model in which the level of low-dose cell killing is determined by the efficiency of both pre-replicative repair by the DNA repair enzyme O6-methylguanine methyltransferase (MGMT) and post-replicative repair by the DNA mismatch repair (MMR) system. We therefore hypothesized that the response of cells to low doses of radiation is dependent on the expression status of MGMT and MMR proteins. MMR (MSH2, MSH6, MLH1, PMS1, PMS2) and MGMT protein expression signatures were determined in a panel of normal (PWR1E, RWPE1) and malignant (22RV1, DU145, PC3) prostate cell lines and correlated with clonogenic survival and cell cycle analysis. PC3 and RWPE1 cells (HRS positive) were associated with MGMT and MMR proficiency, whereas HRS negative cell lines lacked expression of at least one (MGMT or MMR) protein. MGMT inactivation had no significant effect on cell survival. These results indicate a possible role for MMR-dependent processing of damage produced by low doses of radiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the role of the C1772T polymorphisms in exon 12 of the Hypoxia-inducible factor-1 alpha (HIF-1alpha) gene C1772T genotype in prostate cancer (PCa) and amplification of the hypoxic response. We identified the heterozygous germline CT genotype as an increased risk factor for clinically localised prostate cancer (Odds ratio = 6.2; p < 0.0001). While immunostaining intensity for HIF-1alpha and VEGF was significantly enhanced in 75% of PCa specimens when compared to matched benign specimens (p < 0.0001), the CT genotype did not modulate the kinetics of HIF-1alpha protein expression in hypoxia in vitro, and was not associated with enhanced expression of hypoxic biomarkers. This study provides the first evidence of an increased risk for clinically localised prostate cancer in men carrying the C1772T HIF-1alpha gene polymorphism. Although our results did not suggest an association between expression of hypoxic biomarkers and genotype status, the correlation may merit further investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this single centre study of childhood acute lymphoblastic leukaemia (ALL) patients treated on the Medical Research Council UKALL 97/99 protocols, it was determined that minimal residual disease (MRD) detected by real time quantitative polymerase chain reaction (RQ-PCR) and 3-colour flow cytometry (FC) displayed high levels of qualitative concordance when evaluated at multiple time-points during treatment (93.38%), and a combined use of both approaches allowed a multi time-point evaluation of MRD kinetics for 90% (53/59) of the initial cohort. At diagnosis, MRD markers with sensitivity of at least 0.01% were identified by RQ-PCR detection of fusion gene transcripts, IGH/TRG rearrangements, and FC. Using a combined RQ-PCR and FC approach, the evaluation of 367 follow-up BM samples revealed that the detection of MRD >1% at Day 15 (P = 0.04), >0.01% at the end of induction (P = 0.02), >0.01% at the end of consolidation (P = 0.01), >0.01% prior to the first delayed intensification (P = 0.01), and >0.1% prior to the second delayed intensification and continued maintenance (P = 0.001) were all associated with relapse and, based on early time-points (end of induction and consolidation) a significant log-rank trend (P = 0.0091) was noted between survival curves for patients stratified into high, intermediate and low-risk MRD groups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Promoter hypermethylation is recognized as a hallmark of human cancer, in addition to conventional mechanisms of gene inactivation. As such, many new technologies have been developed over the past two decades to uncover novel targets of methylation and decipher complex epigenetic patterns. However, many of these are either labor intensive or provide limited data, confined to oligonucleotide hybridization sequences or enzyme cleavage sites and cannot be easily applied to screening large sets of sequences or samples. We present an application of denaturing high performance liquid chromatography (DHPLC), which relies on bisulfite modification of genomic DNA, for methylation screening. We validated DHPLC as a methylation screening tool using GSTP1, a well known target of methylation in prostate cancer. We developed an in silico approach to identify potential targets of promoter hypermethylation in prostate cancer. Using DHPLC, we screened two of these targets LGALS3 and SMAD4 for methylation. We show that DHPLC has an application as a fast, sensitive, quantitative and cost effective method for screening novel targets or DNA samples for DNA methylation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interactions between the Bcr-Abl kinase inhibitor STI-571 (imatinib mesylate) and a novel microtubule-targeting agent (MTA), pyrrolo-1,5-benzoxazepine (PBOX)-6, were investigated in STI-571-sensitive and -resistant human chronic myeloid leukemia (CML) cells. Cotreatment of PBOX-6 with STI-571 induced significantly more apoptosis in Bcr-Abl-positive CML cell lines (K562 and LAMA-84) than either drug alone (P < 0.01). Cell cycle analysis of propidium iodide-stained cells showed that STI-571 significantly reduced PBOX-6-induced G2M arrest and polyploid formation with a concomitant increase in apoptosis. Similar results were obtained in K562 CML cells using lead MTAs (paclitaxel and nocodazole) in combination with STI-571. Potentiation of PBOX-6-induced apoptosis by STI-571 was specific to Bcr-Abl-positive leukemia cells with no cytoxic effects observed on normal peripheral blood cells. The combined treatment of STI-571 and PBOX-6 was associated with the down-regulation of Bcr-Abl and repression of proteins involved in Bcr-Abl transformation, namely the antiapoptotic proteins Bcl-x(L) and Mcl-1. Importantly, PBOX-6/STI-571 combinations were also effective in STI-571-resistant cells. Together, these findings highlight the potential clinical benefits in simultaneously targeting the microtubules and the Bcr-Abl oncoprotein in STI-571-sensitive and -resistant CML cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aberrant DNA methylation is one of the hallmarks of carcinogenesis and has been recognized in cancer cells for more than 20 years. The role of DNA methylation in malignant transformation of the prostate has been intensely studied, from its contribution to the early stages of tumour development to the advanced stages of androgen independence. The most significant advances have involved the discovery of numerous targets such as GSTP1, Ras-association domain family 1A (RASSF1A) and retinoic acid receptor beta2 (RARbeta2) that become inactivated through promoter hypermethylation during the course of disease initiation and progression. This has provided the basis for translational research into methylation biomarkers for early detection and prognosis of prostate cancer. Investigations into the causes of these methylation events have yielded little definitive data. Aberrant hypomethylation and how it impacts upon prostate cancer has been less well studied. Herein we discuss the major developments in the fields of prostate cancer and DNA methylation, and how this epigenetic modification can be harnessed to address some of the key issues impeding the successful clinical management of prostate cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nuclear factor kappa B (NF-kappaB) activation has been proposed as a cardinal feature of tumourigenesis, although the precise mechanism, frequency, relevance, and extent of NF-kappaB activation in lymphomas remain to be fully elucidated. In this study, expression profiling and tissue microarray studies of 209 and 323 non-Hodgkin's lymphomas (NHLs) respectively, including the most frequent sub-types of NHL, were employed to generate a hypothesis concerning the most common NF-kappaB targets in NHL. These analyses showed that NF-kappaB activation is a common phenomenon in NHL, resulting in the expression of distinct sets of NF-kappaB target genes, depending on the cell context. BCL2 and BIRC5/Survivin were identified as key NF-kappaB targets and their expression distinguished small and aggressive B-cell lymphomas, respectively. Interestingly, in the vast majority of B-cell lymphomas, the expression of these markers was mutually exclusive. A set of genes was identified whose expression correlates either with BIRC5/Survivin or with BCL2. BIRC5/Survivin expression, in contrast to BCL2, was associated with a signature of cell proliferation (overexpression of cell cycle control, DNA repair, and polymerase genes), which may contribute to the aggressive phenotype and poor prognosis of these lymphomas. Strikingly, mantle cell lymphoma and chronic lymphocytic leukaemia expressed highly elevated levels of BCL2 protein and mRNA, higher than that observed in reactive mantle zone cells or even in follicular lymphomas, where BCL2 expression is deregulated through the t(14;18) translocation. In parallel with this observation, BIRC5/Survivin expression was higher in Burkitt's lymphoma and diffuse large B-cell lymphoma than in non-tumoural germinal centre cells. In vitro studies confirmed that NF-kappaB activation contributes to the expression of both markers. In cell lines representing aggressive lymphomas, NF-kappaB inhibition resulted in a decrease in BIRC5/Survivin expression. Meanwhile, in chronic lymphocytic leukaemia (CLL)-derived lymphocytes, NF-kappaB inhibition resulted in a marked decrease in BCL2 expression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Between August 1989 and November 2003, 33 patients at our center with acquired aplastic anemia underwent bone marrow transplantation (BMT) from HLA-identical sibling donors with cyclophosphamide and in vivo anti-CD52 monoclonal antibodies (MoAb) for conditioning. The median age at BMT was 17 years (range, 4-46 years). Before BMT, 58% were heavily transfused (>50 transfusions), and 42% had previously experienced treatment failure with antithymocyte globulin-based immunosuppressive therapy. Unmanipulated bone marrow was used as the source of stem cells in all patients except 1. Graft-versus-host disease (GVHD) prophylaxis was with cyclosporine alone in 19 (58%) patients; 14 received anti-CD52 MoAb in addition to cyclosporine. The conditioning regimen was well tolerated without significant acute toxicity. Graft failure was seen in 8 patients (primary, n = 4; secondary, n = 4). Of those whose grafts failed, 4 survived long-term (complete autologous recovery, n = 2; rescue with previously stored marrow, n = 1; second allograft, n = 1). The cumulative incidence of graft failure and grade II to IV acute and chronic GVHD was 24%, 14%, and 4%, respectively. None developed extensive chronic GVHD. With a median follow-up of 59 months, the 5-year survival was 81% (95% confidence interval, 68%-96%). No unexpected early or late infectious or noninfectious complications were observed. We conclude that the conditioning regimen containing cyclophosphamide and anti-CD52 MoAb is well tolerated and effective for acquired aplastic anemia with HLA-matched sibling donors. The favorable effect on the incidence and severity of GVHD is noteworthy in this study and warrants further investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Overexpression of the Bcl-2 proto-oncogene in tumor cells confers resistance against chemotherapeutic drugs. In this study, we describe how the novel pyrrolo-1,5-benzoxazepine compound 7-[[dimethylcarbamoyl]oxy]-6-(2-naphthyl)pyrrolo-[2,1-d] (1,5)-benzoxazepine (PBOX-6) selectively induces apoptosis in Bcl-2-overexpressing cancer cells, whereas it shows no cytotoxic effect on normal peripheral blood mononuclear cells. PBOX-6 overcomes Bcl-2-mediated resistance to apoptosis in chronic myelogenous leukemia (CML) K562 cells by the time- and dose-dependent phosphorylation and inactivation of antiapoptotic Bcl-2 family members Bcl-2 and Bcl-XL. PBOX-6 also induces Bcl-2 phosphorylation and apoptosis in wild-type T leukemia CEM cells and cells overexpressing Bcl-2. This is in contrast to chemotherapeutic agents such as etoposide, actinomycin D, and ultraviolet irradiation, whereby overexpression of Bcl-2 confers resistance against apoptosis. In addition, PBOX-6 induces Bcl-2 phosphorylation and apoptosis in wild-type Jurkat acute lymphoblastic leukemia cells and cells overexpressing Bcl-2. However, Jurkat cells containing a Bcl-2 triple mutant, whereby the principal Bcl-2 phosphorylation sites are mutated to alanine, demonstrate resistance against Bcl-2 phosphorylation and apoptosis. PBOX-6 also induces the early and transient activation of c-Jun NH2-terminal kinase (JNK) in CEM cells. Inhibition of JNK activity prevents Bcl-2 phosphorylation and apoptosis, implicating JNK in the upstream signaling pathway leading to Bcl-2 phosphorylation. Collectively, these findings identify Bcl-2 phosphorylation and inactivation as a critical step in the apoptotic pathway induced by PBOX-6 and highlight its potential as an effective antileukemic agent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interferon-alpha (IFN-alpha) therapy is commonly used in the treatment of neoplastic and autoimmune diseases, including cutaneous T cell lymphoma (CTCL). However, the IFN-alpha response is unpredictable, and the IFN-alpha cell targets and pathways are only partially understood. To delineate the molecular mechanisms of IFN-alpha activity, gene expression profiling was performed in a time-course experiment of both IFN-alpha sensitive and IFN-alpha-resistant variants of a CTCL cell line. These experiments revealed that IFN-alpha is responsible for the regulation of hundreds of genes in both variants and predominantly involves genes implicated in signal transduction, cell cycle control, apoptosis, and transcription regulation. Specifically, the IFN-alpha response of tumoral T cells is due to a combination of induction of apoptosis in which TNFSF10 and HSXIAPAF1 may play an important role and cell cycle arrest achieved by downregulation of CDK4 and CCNG2 and upregulation of CDKN2C and tumor suppressor genes (TSGs). Resistance to IFN-alpha appears to be associated with failure to induce IRF1 and IRF7 and deregulation of the apoptotic signals of HSXIAPAF1, TRADD, BAD, and BNIP3. Additionally, cell cycle progression is heralded by upregulation of CDC25A and CDC42. A critical role of NF-kappaB in promoting cell survival in IFN-alpha-resistant cells is indicated by the upregulation of RELB and LTB.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wilms' tumor gene 1 (WT1) is overexpressed in the majority (70-90%) of acute leukemias and has been identified as an independent adverse prognostic factor, a convenient minimal residual disease (MRD) marker and potential therapeutic target in acute leukemia. We examined WT1 expression patterns in childhood acute lymphoblastic leukemia (ALL), where its clinical implication remains unclear. Using a real-time quantitative PCR designed according to Europe Against Cancer Program recommendations, we evaluated WT1 expression in 125 consecutively enrolled patients with childhood ALL (106 BCP-ALL, 19 T-ALL) and compared it with physiologic WT1 expression in normal and regenerating bone marrow (BM). In childhood B-cell precursor (BCP)-ALL, we detected a wide range of WT1 levels (5 logs) with a median WT1 expression close to that of normal BM. WT1 expression in childhood T-ALL was significantly higher than in BCP-ALL (P<0.001). Patients with MLL-AF4 translocation showed high WT1 overexpression (P<0.01) compared to patients with other or no chromosomal aberrations. Older children (> or =10 years) expressed higher WT1 levels than children under 10 years of age (P<0.001), while there was no difference in WT1 expression in patients with peripheral blood leukocyte count (WBC) > or =50 x 10(9)/l and lower. Analysis of relapsed cases (14/125) indicated that an abnormal increase or decrease in WT1 expression was associated with a significantly increased risk of relapse (P=0.0006), and this prognostic impact of WT1 was independent of other main risk factors (P=0.0012). In summary, our study suggests that WT1 expression in childhood ALL is very variable and much lower than in AML or adult ALL. WT1, thus, will not be a useful marker for MRD detection in childhood ALL, however, it does represent a potential independent risk factor in childhood ALL. Interestingly, a proportion of childhood ALL patients express WT1 at levels below the normal physiological BM WT1 expression, and this reduced WT1 expression appears to be associated with a higher risk of relapse.