878 resultados para NEIGHBORHOOD


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We apply Stochastic Dynamics method for a differential equations model, proposed by Marc Lipsitch and collaborators (Proc. R. Soc. Lond. B 260, 321, 1995), for which the transmission dynamics of parasites occurs from a parent to its offspring (vertical transmission), and by contact with infected host (horizontal transmission). Herpes, Hepatitis and AIDS are examples of diseases for which both horizontal and vertical transmission occur simultaneously during the virus spreading. Understanding the role of each type of transmission in the infection prevalence on a susceptible host population may provide some information about the factors that contribute for the eradication and/or control of those diseases. We present a pair mean-field approximation obtained from the master equation of the model. The pair approximation is formed by the differential equations of the susceptible and infected population densities and the differential equations of pairs that contribute to the former ones. In terms of the model parameters, we obtain the conditions that lead to the disease eradication, and set up the phase diagram based on the local stability analysis of fixed points. We also perform Monte Carlo simulations of the model on complete graphs and Erdös-Rényi graphs in order to investigate the influence of population size and neighborhood on the previous mean-field results; by this way, we also expect to evaluate the contribution of vertical and horizontal transmission on the elimination of parasite. Pair Approximation for a Model of Vertical and Horizontal Transmission of Parasites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[EN] The aim of this work is to propose a new method for estimating the backward flow directly from the optical flow. We assume that the optical flow has already been computed and we need to estimate the inverse mapping. This mapping is not bijective due to the presence of occlusions and disocclusions, therefore it is not possible to estimate the inverse function in the whole domain. Values in these regions has to be guessed from the available information. We propose an accurate algorithm to calculate the backward flow uniquely from the optical flow, using a simple relation. Occlusions are filled by selecting the maximum motion and disocclusions are filled with two different strategies: a min-fill strategy, which fills each disoccluded region with the minimum value around the region; and a restricted min-fill approach that selects the minimum value in a close neighborhood. In the experimental results, we show the accuracy of the method and compare the results using these two strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[EN] We analyze the discontinuity preserving problem in TV-L1 optical flow methods. This type of methods typically creates rounded effects at flow boundaries, which usually do not coincide with object contours. A simple strategy to overcome this problem consists in inhibiting the diffusion at high image gradients. In this work, we first introduce a general framework for TV regularizers in optical flow and relate it with some standard approaches. Our survey takes into account several methods that use decreasing functions for mitigating the diffusion at image contours. Consequently, this kind of strategies may produce instabilities in the estimation of the optical flows. Hence, we study the problem of instabilities and show that it actually arises from an ill-posed formulation. From this study, it is possible to come across with different schemes to solve this problem. One of these consists in separating the pure TV process from the mitigating strategy. This has been used in another work and we demonstrate here that it has a good performance. Furthermore, we propose two alternatives to avoid the instability problems: (i) we study a fully automatic approach that solves the problem based on the information of the whole image; (ii) we derive a semi-automatic approach that takes into account the image gradients in a close neighborhood adapting the parameter in each position. In the experimental results, we present a detailed study and comparison between the different alternatives. These methods provide very good results, especially for sequences with a few dominant gradients. Additionally, a surprising effect of these approaches is that they can cope with occlusions. This can be easily achieved by using strong regularizations and high penalizations at image contours.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present thesis is concerned with the study of a quantum physical system composed of a small particle system (such as a spin chain) and several quantized massless boson fields (as photon gasses or phonon fields) at positive temperature. The setup serves as a simplified model for matter in interaction with thermal "radiation" from different sources. Hereby, questions concerning the dynamical and thermodynamic properties of particle-boson configurations far from thermal equilibrium are in the center of interest. We study a specific situation where the particle system is brought in contact with the boson systems (occasionally referred to as heat reservoirs) where the reservoirs are prepared close to thermal equilibrium states, each at a different temperature. We analyze the interacting time evolution of such an initial configuration and we show thermal relaxation of the system into a stationary state, i.e., we prove the existence of a time invariant state which is the unique limit state of the considered initial configurations evolving in time. As long as the reservoirs have been prepared at different temperatures, this stationary state features thermodynamic characteristics as stationary energy fluxes and a positive entropy production rate which distinguishes it from being a thermal equilibrium at any temperature. Therefore, we refer to it as non-equilibrium stationary state or simply NESS. The physical setup is phrased mathematically in the language of C*-algebras. The thesis gives an extended review of the application of operator algebraic theories to quantum statistical mechanics and introduces in detail the mathematical objects to describe matter in interaction with radiation. The C*-theory is adapted to the concrete setup. The algebraic description of the system is lifted into a Hilbert space framework. The appropriate Hilbert space representation is given by a bosonic Fock space over a suitable L2-space. The first part of the present work is concluded by the derivation of a spectral theory which connects the dynamical and thermodynamic features with spectral properties of a suitable generator, say K, of the time evolution in this Hilbert space setting. That way, the question about thermal relaxation becomes a spectral problem. The operator K is of Pauli-Fierz type. The spectral analysis of the generator K follows. This task is the core part of the work and it employs various kinds of functional analytic techniques. The operator K results from a perturbation of an operator L0 which describes the non-interacting particle-boson system. All spectral considerations are done in a perturbative regime, i.e., we assume that the strength of the coupling is sufficiently small. The extraction of dynamical features of the system from properties of K requires, in particular, the knowledge about the spectrum of K in the nearest vicinity of eigenvalues of the unperturbed operator L0. Since convergent Neumann series expansions only qualify to study the perturbed spectrum in the neighborhood of the unperturbed one on a scale of order of the coupling strength we need to apply a more refined tool, the Feshbach map. This technique allows the analysis of the spectrum on a smaller scale by transferring the analysis to a spectral subspace. The need of spectral information on arbitrary scales requires an iteration of the Feshbach map. This procedure leads to an operator-theoretic renormalization group. The reader is introduced to the Feshbach technique and the renormalization procedure based on it is discussed in full detail. Further, it is explained how the spectral information is extracted from the renormalization group flow. The present dissertation is an extension of two kinds of a recent research contribution by Jakšić and Pillet to a similar physical setup. Firstly, we consider the more delicate situation of bosonic heat reservoirs instead of fermionic ones, and secondly, the system can be studied uniformly for small reservoir temperatures. The adaption of the Feshbach map-based renormalization procedure by Bach, Chen, Fröhlich, and Sigal to concrete spectral problems in quantum statistical mechanics is a further novelty of this work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents hybrid Constraint Programming (CP) and metaheuristic methods for the solution of Large Scale Optimization Problems; it aims at integrating concepts and mechanisms from the metaheuristic methods to a CP-based tree search environment in order to exploit the advantages of both approaches. The modeling and solution of large scale combinatorial optimization problem is a topic which has arisen the interest of many researcherers in the Operations Research field; combinatorial optimization problems are widely spread in everyday life and the need of solving difficult problems is more and more urgent. Metaheuristic techniques have been developed in the last decades to effectively handle the approximate solution of combinatorial optimization problems; we will examine metaheuristics in detail, focusing on the common aspects of different techniques. Each metaheuristic approach possesses its own peculiarities in designing and guiding the solution process; our work aims at recognizing components which can be extracted from metaheuristic methods and re-used in different contexts. In particular we focus on the possibility of porting metaheuristic elements to constraint programming based environments, as constraint programming is able to deal with feasibility issues of optimization problems in a very effective manner. Moreover, CP offers a general paradigm which allows to easily model any type of problem and solve it with a problem-independent framework, differently from local search and metaheuristic methods which are highly problem specific. In this work we describe the implementation of the Local Branching framework, originally developed for Mixed Integer Programming, in a CP-based environment. Constraint programming specific features are used to ease the search process, still mantaining an absolute generality of the approach. We also propose a search strategy called Sliced Neighborhood Search, SNS, that iteratively explores slices of large neighborhoods of an incumbent solution by performing CP-based tree search and encloses concepts from metaheuristic techniques. SNS can be used as a stand alone search strategy, but it can alternatively be embedded in existing strategies as intensification and diversification mechanism. In particular we show its integration within the CP-based local branching. We provide an extensive experimental evaluation of the proposed approaches on instances of the Asymmetric Traveling Salesman Problem and of the Asymmetric Traveling Salesman Problem with Time Windows. The proposed approaches achieve good results on practical size problem, thus demonstrating the benefit of integrating metaheuristic concepts in CP-based frameworks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present thesis is a contribution to the multi-variable theory of Bergman and Hardy Toeplitz operators on spaces of holomorphic functions over finite and infinite dimensional domains. In particular, we focus on certain spectral invariant Frechet operator algebras F closely related to the local symbol behavior of Toeplitz operators in F. We summarize results due to B. Gramsch et.al. on the construction of Psi_0- and Psi^*-algebras in operator algebras and corresponding scales of generalized Sobolev spaces using commutator methods, generalized Laplacians and strongly continuous group actions. In the case of the Segal-Bargmann space H^2(C^n,m) of Gaussian square integrable entire functions on C^n we determine a class of vector-fields Y(C^n) supported in complex cones K. Further, we require that for any finite subset V of Y(C^n) the Toeplitz projection P is a smooth element in the Psi_0-algebra constructed by commutator methods with respect to V. As a result we obtain Psi_0- and Psi^*-operator algebras F localized in cones K. It is an immediate consequence that F contains all Toeplitz operators T_f with a symbol f of certain regularity in an open neighborhood of K. There is a natural unitary group action on H^2(C^n,m) which is induced by weighted shifts and unitary groups on C^n. We examine the corresponding Psi^*-algebra A of smooth elements in Toeplitz-C^*-algebras. Among other results sufficient conditions on the symbol f for T_f to belong to A are given in terms of estimates on its Berezin-transform. Local aspects of the Szegö projection P_s on the Heisenbeg group and the corresponding Toeplitz operators T_f with symbol f are studied. In this connection we apply a result due to Nagel and Stein which states that for any strictly pseudo-convex domain U the projection P_s is a pseudodifferential operator of exotic type (1/2, 1/2). The second part of this thesis is devoted to the infinite dimensional theory of Bergman and Hardy spaces and the corresponding Toeplitz operators. We give a new proof of a result observed by Boland and Waelbroeck. Namely, that the space of all holomorphic functions H(U) on an open subset U of a DFN-space (dual Frechet nuclear space) is a FN-space (Frechet nuclear space) equipped with the compact open topology. Using the nuclearity of H(U) we obtain Cauchy-Weil-type integral formulas for closed subalgebras A in H_b(U), the space of all bounded holomorphic functions on U, where A separates points. Further, we prove the existence of Hardy spaces of holomorphic functions on U corresponding to the abstract Shilov boundary S_A of A and with respect to a suitable boundary measure on S_A. Finally, for a domain U in a DFN-space or a polish spaces we consider the symmetrizations m_s of measures m on U by suitable representations of a group G in the group of homeomorphisms on U. In particular,in the case where m leads to Bergman spaces of holomorphic functions on U, the group G is compact and the representation is continuous we show that m_s defines a Bergman space of holomorphic functions on U as well. This leads to unitary group representations of G on L^p- and Bergman spaces inducing operator algebras of smooth elements related to the symmetries of U.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BTES (borehole thermal energy storage)systems exchange thermal energy by conduction with the surrounding ground through borehole materials. The spatial variability of the geological properties and the space-time variability of hydrogeological conditions affect the real power rate of heat exchangers and, consequently, the amount of energy extracted from / injected into the ground. For this reason, it is not an easy task to identify the underground thermal properties to use when designing. At the current state of technology, Thermal Response Test (TRT) is the in situ test for the characterization of ground thermal properties with the higher degree of accuracy, but it doesn’t fully solve the problem of characterizing the thermal properties of a shallow geothermal reservoir, simply because it characterizes only the neighborhood of the heat exchanger at hand and only for the test duration. Different analytical and numerical models exist for the characterization of shallow geothermal reservoir, but they are still inadequate and not exhaustive: more sophisticated models must be taken into account and a geostatistical approach is needed to tackle natural variability and estimates uncertainty. The approach adopted for reservoir characterization is the “inverse problem”, typical of oil&gas field analysis. Similarly, we create different realizations of thermal properties by direct sequential simulation and we find the best one fitting real production data (fluid temperature along time). The software used to develop heat production simulation is FEFLOW 5.4 (Finite Element subsurface FLOW system). A geostatistical reservoir model has been set up based on literature thermal properties data and spatial variability hypotheses, and a real TRT has been tested. Then we analyzed and used as well two other codes (SA-Geotherm and FV-Geotherm) which are two implementation of the same numerical model of FEFLOW (Al-Khoury model).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Questa tesi di carattere antropologico in ambito dottorale riguarda i rituali comunitari nelle comunità indigene messicane. Il principale oggetto della ricerca è il rituale della pioggia o di Petición de Lluvia, caratterizzato sia dal sacrificio animale che da una specifica relazione di causa-effetto con l’ambiente circostante. La ricerca etnografica è cominciata dall’ipotesi di voler verificare la persistenza nel tempo, e dunque nell’attualità, di procedure cerimoniali non appartenenti, almeno nella loro forma più lineare, alla religione cattolico-cristiana. Il luogo nel quale è avvenuta tale ricerca è la regione La Montaña di Guerrero, situata nel Messico sud-occidentale, e più precisamente la zona in cui vivono le comunità di etnia Nahua di San Pedro Petlacala, Acuilpa, e Xalpatláhuac che si trovano nelle vicinanze della cittadina di Tlapa de Comonfort. In un contesto ambientale profondamente rurale come quello della Montaña di Guerrero, la persistenza dei rituali evidenzia come le risorse naturali e gli agenti atmosferici - pioggia, vento, nubi - continuino a rappresentare gli elementi centrali che condizionano le variabili economiche di sussistenza e della riproduzione sociale. Il rituale di Petición de Lluvia rappresenta il momento di congiunzione tra la stagione secca e quella piovosa, tra la semina ed il raccolto del mais. Definito come una pratica religiosa nella quale il gruppo si identifica e partecipa con varie donazioni (ofrenda o deposito rituale), suddivisibili in alimenti/oggetti/preghiere ed azioni rituali, la cerimonia esprime l’auspicio di piogge abbondanti, con le quali irrigare i campi e continuare le attività umane. Il destinatario dell’offerta è la stessa divinità della pioggia, Tlaloc per le antiche civiltà mesoamericane, invocato sotto le mentite spoglie del santo patrono del 25 aprile, San Marcos. Il rituale è contraddistinto per tutta la sua durata dalla presenza del principale specialista religioso, sacerdote in lingua spagnola oppure «Tlahmáquetl» in lingua náhuatl.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Se le trasformazioni sociali in atto tendono a esasperare il senso di incertezza, sradicamento ed individualismo, sussistono pratiche che si contrappongono alle tendenze dominanti, finalizzate a ricucire i legami sociali su scala locale. La progettazione urbano-architettonica interiorizza il nuovo bisogno di comunità originando soluzioni abitative tese a favorire gli scambi informali fra vicini, facendo leva sul concetto di capitale sociale, attaccamento al quartiere, identità del luogo e partecipazione. La casa, simbolo di stabilità e sicurezza ma anche di privacy, privatismo familiare, diventa sempre più oggetto di studi, domanda sociale e intervento politico. Soprattutto è sempre più intesa come un nodo di relazioni familiari in una rete di relazioni sociali più ampie. Casa e quartiere incidono nella esperienza di benessere e socialità familiare? In che modo gli spazi urbani e architettonici influenzano la coesione sociale? Quale il ruolo degli abitanti nello sviluppare socialità e integrazione? Sono queste le domande che ci siamo posti per rilevare le dinamiche sociali e culturali dell’abitare attraverso uno studio di caso condotto in due quartieri simili. Dalla ricerca emerge come il significato della casa non sia univoco ma cambi rispetto al ciclo di vita familiare e a quello economico e ciò incide nella partecipazione alle attività di quartiere. Mostriamo inoltre come lo spazio fisico costruito crea importanti opportunità per gli scambi informali e per il benessere familiare e individuale dei bambini ma che, il contesto sociale sia una discriminate fondamentale. Nel quartiere dove è presente una organizzazione di abitanti il numero delle relazioni di vicinato aumenta, cambiano anche la qualità delle relazioni e le distanze fisiche fra i vicini. Emerge inoltre che la reciprocità è il principale strumento di costruzione della coesione comunitaria interna e crea un atteggiamento di apertura e fiducia che va al di là dei confini di quartiere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La VI regio augustea di Roma rappresenta uno dei settori urbani maggiormente investiti dalle modifiche radicali compiute dall’uomo nel processo di urbanizzazione della città che ne hanno modificato profondamente la situazione altimetrica e la conformazione originaria. Questi notevoli cambiamenti ebbero origine sin dall’età antica, ma si intensificarono profondamente soprattutto nel periodo rinascimentale quando a partire da Pio IV e soprattutto con Sisto V, attivo in tante altre zone della città, si svilupparono numerose opere di rinnovamento urbanistico che incisero notevolmente sul volto e sulle caratteristiche della zona in esame. A partire dal Rinascimento fino ad arrivare ai grandi scavi della fine del 1800 tutto il quartiere incominciò a “popolarsi” di numerosi edifici di grande mole che andarono ad intaccare completamente le vestigia del periodo antico: la costruzione del Palazzo del Quirinale e dei vari palazzi nobiliari ma soprattutto la costruzione dei numerosi ministeri e della prima stazione Termini alla fine dell’800 comportarono numerosi sventramenti senza la produzione di una adeguata documentazione delle indagini di scavo. Questa ricerca intende ricostruire, in un’ottica diacronica, la topografia di uno dei quartieri centrali della Roma antica attraverso l’analisi dei principali fenomeni che contraddistinguono l’evoluzione del tessuto urbano sia per quanto riguarda le strutture pubbliche che in particolar modo quelle private. Infatti, il dato principale che emerge da questa ricerca è che questa regio si configura, a partire già dal periodo tardo-repubblicano, come un quartiere a vocazione prevalentemente residenziale, abitato soprattutto dall’alta aristocrazia appartenente alle più alte cariche dello Stato romano; oltre a domus ed insulae, sul Quirinale, vennero costruiti lungo il corso di tutta l’età repubblicana alcuni tra i più antichi templi della città che con la loro mole occuparono parte dello spazio collinare fino all’età tardoantica, rappresentando così una macroscopica e costante presenza nell’ingombro dello spazio edificato.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this thesis is to provide a geochemical characterization of the Seehausen territory (a neighborhood) of Bremen, Germany. In this territory it is hosted a landfill of dredged sediments coming both from Bremerhaven (North See) and Bremen harbor (directly on the river Weser). For this reason this work has been focused also on possible impacts of the landfill on the groundwaters (shallow and deep aquifer). The Seehausen landfill uses the dewatering technique to manage the dredged sediments: incoming sediments are put into dewatering fields until they are completely dried (it takes almost a year). Then they are randomly sampled and analyzed: if the pollutants content is acceptable, sediments are treated with other materials and used instead of raw material for embankment, bricks, etc., otherwise they are disposed in the landfill. During this work it has been made a study of the natural geology and hydrogeology of the whole area of interest, especially because it is characterized by ancient natural salt deposits. Then, together with the Geological Survey of Bremen and the Harbor Authority of Bremen there have been identified all useful piezometers for a monitoring net around the landfill. During the sampling campaign there have been collected data of the principal anions and cations, physical parameters and stable water isotopes. Data analysis has been focused particularly on Cl, Na, SO4 and EC because these parameters might be helpful to attribute geochemical trends to the landfill or to a natural background. Furthermore dataloggers have been installed for a month in some piezometers and EC, pressure, dissolved oxygen and temperature data have been collected. Finally there has been made a deep comparison between current and historical data (1996 – 2011) and between old interpolation maps and current ones in order to see time trends of the aquifer geochemistry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study is to analyse the regularity of a differential operator, the Kohn Laplacian, in two settings: the Heisenberg group and the strongly pseudoconvex CR manifolds. The Heisenberg group is defined as a space of dimension 2n+1 with a product. It can be seen in two different ways: as a Lie group and as the boundary of the Siegel UpperHalf Space. On the Heisenberg group there exists the tangential CR complex. From this we define its adjoint and the Kohn-Laplacian. Then we obtain estimates for the Kohn-Laplacian and find its solvability and hypoellipticity. For stating L^p and Holder estimates, we talk about homogeneous distributions. In the second part we start working with a manifold M of real dimension 2n+1. We say that M is a CR manifold if some properties are satisfied. More, we say that a CR manifold M is strongly pseudoconvex if the Levi form defined on M is positive defined. Since we will show that the Heisenberg group is a model for the strongly pseudo-convex CR manifolds, we look for an osculating Heisenberg structure in a neighborhood of a point in M, and we want this structure to change smoothly from a point to another. For that, we define Normal Coordinates and we study their properties. We also examinate different Normal Coordinates in the case of a real hypersurface with an induced CR structure. Finally, we define again the CR complex, its adjoint and the Laplacian operator on M. We study these new operators showing subelliptic estimates. For that, we don't need M to be pseudo-complex but we ask less, that is, the Z(q) and the Y(q) conditions. This provides local regularity theorems for Laplacian and show its hypoellipticity on M.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

"Non possiamo permettere l'utilizzo del [tessuto] urbano come strumento per la produzione di iniquità e trasferimenti, incapaci di vedere l'importanza e la difficoltà di creare uno spazio attivo che sia equo, ecologico ed economico" (Schafran, 2014). In un contesto di emergenza ambientale globale e considerando le problematiche degli insediamenti popolari sudamericani, la presente ricerca propone l’introduzione del concetto di sostenibilità urbana come fattore di miglioramento di un quartiere della periferia del Gran Santiago. Il caso studio è interessante in quanto la politica cilena si muove in direzione di maggiore consapevolezza per i temi ambientali, pur dovendo ancora risolvere problemi di segregazione e scarsa qualità nella “vivienda social”. La presente ricerca è quindi finalizzata ad individuare una matrice composta da linee guida di sostenibilità riferite alla scala di quartiere, come strategia per rispondere ai problemi socio-residenziali, oltre alle imperanti esigenze di maggiore sostenibilità ambientale. A tale scopo è necessario fare riferimento a sistemi di valutazione adeguati: analizzando quelli utilizzati in ambito nazionale e internazionale, si ricava una matrice di 106 linee guida, 16 criteri e 3 ambiti principali di interesse. È questo lo strumento utilizzato per la diagnosi del caso studio. In base alle criticità emerse e alle necessità dell’area emergono due strategie principali su cui si articola la proposta progettuale di riqualificazione del quartiere: implementare dotazioni di servizi e aree verdi e introdurre tecnologie e misure ecofriendy, col fine di generare identità e migliorare la qualità di vita nel quartiere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nearly 500 brown dwarfs have been discovered in recent years. The majority of these brown dwarfs exist in the solar neighborhood, yet determining their fundamental properties (mass, age, temperature & metallicity) has proved to be quite difficult, with current estimates relying heavily on theoretical models. Binary brown dwarfs provide a unique opportunity to empirically determine fundamental properties, which can then be used to test model predictions. In addition, the observed binary fractions, separations, mass ratios, & orbital eccentricities can provide insight into the formation mechanism of these low-mass objects. I will review the results of various brown dwarf multiplicity studies, and will discuss what we have learned about the formation and evolution of brown dwarfs by examining their binary properties as a function of age and mass.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have discovered using Pan-STARRS1 an extremely red late-L dwarf, which has (J - K)(MKO) = 2.78 and (J - K) (2MASS) = 2.84, making it the reddest known field dwarf and second only to 2MASS J1207-39b among substellar companions. Near-IR spectroscopy shows a spectral type of L7 +/- 1 and reveals a triangular H-band continuum and weak alkali (K I and Na I) lines, hallmarks of low surface gravity. Near-IR astrometry from the Hawaii Infrared Parallax Program gives a distance of 24.6 +/- 1.4 pc and indicates a much fainter J-band absolute magnitude than field L dwarfs. The position and kinematics of PSO J318.5-22 point to membership in the beta Pic moving group. Evolutionary models give a temperature of 1160(-40)(+30) K and a mass of 6.5(-1.0)(+1.3) M-Jup, making PSO J318.5-22 one of the lowest mass free-floating objects in the solar neighborhood. This object adds to the growing list of low-gravity field L dwarfs and is the first to be strongly deficient in methane relative to its estimated temperature. Comparing their spectra suggests that young L dwarfs with similar ages and temperatures can have different spectral signatures of youth. For the two objects with well constrained ages (PSO J318.5-22 and 2MASS J0355+11), we find their temperatures are approximate to 400 K cooler than field objects of similar spectral type but their luminosities are similar, i.e., these young L dwarfs are very red and unusually cool but not "underluminous." Altogether, PSO J318.5-22 is the first free-floating object with the colors, magnitudes, spectrum, luminosity, and mass that overlap the young dusty planets around HR 8799 and 2MASS J1207-39