988 resultados para Muscle Dysfunction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To report a novel maculopathy in a patient with SCA1. To describe autofluorescence findings in family with SCA7 and associated cone-rod retinal dysfunction.Methods: 4 affected patients from two families were assessed to investigate a progressive loss of visual acuity (VA). Examinations included fundus photography, autofluorescence (AF) fundus fluorescein angiogragraphy (FFA) and optical coherence tomography. Electroretinogram (full-field) was performed in 2 affected patients. All patients had color vision testing using Ishihara pseudoisochromatic plates. Molecular analysis was performed in family 2.Results: The patient with known diagnosis of SCA1 had a visual acuity of 20/200 bilaterally and dyschromatopsia. He had saccadic pursuit. Fundus examination showed mild retinal pigment epithelium (RPE) changes at the macula. OCT showed bilateral macular serous detachment, which was not obvious at the FFA and explained his VA. AF imaging showed a central hyperfluorescence. The 45 year old proband from family 2 had a visual acuity of 200/20 and dyschromatopsia. ERG testing showed cone type dysfunction of photoreceptors. Her daughter affected at a younger age had the same ERGs findings. Fundus examination showed mild RPE changes in proband, normal findings in her daughter. AF imaging of both patients showed a ring of high density AF around the fovea. The ring was also obvious on near infrared AF. Later onset of gait imbalance led to the diagnosis of SCA7Conclusions: Within the group of spinocerebellar ataxias, only the type 7 is associated with retinal dysfunction. We present the first report of maculopathy associated with SCA1 causing severe vision loss. The ring of high density AF in SCA7 confirmed an early retinal photoreceptor dysfunction in patient with normal fundus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent evidence suggests the existence of a hepatoportal vein glucose sensor, whose activation leads to enhanced glucose use in skeletal muscle, heart, and brown adipose tissue. The mechanism leading to this increase in whole body glucose clearance is not known, but previous data suggest that it is insulin independent. Here, we sought to further determine the portal sensor signaling pathway by selectively evaluating its dependence on muscle GLUT4, insulin receptor, and the evolutionarily conserved sensor of metabolic stress, AMP-activated protein kinase (AMPK). We demonstrate that the increase in muscle glucose use was suppressed in mice lacking the expression of GLUT4 in the organ muscle. In contrast, glucose use was stimulated normally in mice with muscle-specific inactivation of the insulin receptor gene, confirming independence from insulin-signaling pathways. Most importantly, the muscle glucose use in response to activation of the hepatoportal vein glucose sensor was completely dependent on the activity of AMPK, because enhanced hexose disposal was prevented by expression of a dominant negative AMPK in muscle. These data demonstrate that the portal sensor induces glucose use and development of hypoglycemia independently of insulin action, but by a mechanism that requires activation of the AMPK and the presence of GLUT4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Acetate metabolism in skeletal muscle is regulated by acetylCoA synthetase (ACS). The main function of ACS is to provide cells with acetylCoA, a key molecule for numerous metabolic pathways including fatty acid and cholesterol synthesis and the Krebs cycle. METHODS: Hyperpolarized [1-(13)C]acetate prepared via dissolution dynamic nuclear polarization was injected intravenously at different concentrations into rats. The (13)C magnetic resonance signals of [1-(13)C]acetate and [1-(13)C]acetylcarnitine were recorded in vivo for 1min. The kinetic rate constants related to the transformation of acetate into acetylcarnitine were deduced from the 3s time resolution measurements using two approaches, either mathematical modeling or relative metabolite ratios. RESULTS: Although separated by two biochemical transformations, a kinetic analysis of the (13)C label flow from [1-(13)C]acetate to [1-(13)C]acetylcarnitine led to a unique determination of the activity of ACS. The in vivo Michaelis constants for ACS were KM=0.35±0.13mM and Vmax=0.199±0.031μmol/g/min. CONCLUSIONS: The conversion rates from hyperpolarized acetate into acetylcarnitine were quantified in vivo and, although separated by two enzymatic reactions, these rates uniquely defined the activity of ACS. The conversion rates associated with ACS were obtained using two analytical approaches, both methods yielding similar results. GENERAL SIGNIFICANCE: This study demonstrates the feasibility of directly measuring ACS activity in vivo and, since the activity of ACS can be affected by various pathological states such as cancer or diabetes, the proposed method could be used to non-invasively probe metabolic signatures of ACS in diseased tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: American College of Cardiology/American Heart Association guidelines for the diagnosis and management of heart failure recommend investigating exacerbating conditions such as thyroid dysfunction, but without specifying the impact of different thyroid-stimulation hormone (TSH) levels. Limited prospective data exist on the association between subclinical thyroid dysfunction and heart failure events. METHODS AND RESULTS: We performed a pooled analysis of individual participant data using all available prospective cohorts with thyroid function tests and subsequent follow-up of heart failure events. Individual data on 25 390 participants with 216 248 person-years of follow-up were supplied from 6 prospective cohorts in the United States and Europe. Euthyroidism was defined as TSH of 0.45 to 4.49 mIU/L, subclinical hypothyroidism as TSH of 4.5 to 19.9 mIU/L, and subclinical hyperthyroidism as TSH <0.45 mIU/L, the last two with normal free thyroxine levels. Among 25 390 participants, 2068 (8.1%) had subclinical hypothyroidism and 648 (2.6%) had subclinical hyperthyroidism. In age- and sex-adjusted analyses, risks of heart failure events were increased with both higher and lower TSH levels (P for quadratic pattern <0.01); the hazard ratio was 1.01 (95% confidence interval, 0.81-1.26) for TSH of 4.5 to 6.9 mIU/L, 1.65 (95% confidence interval, 0.84-3.23) for TSH of 7.0 to 9.9 mIU/L, 1.86 (95% confidence interval, 1.27-2.72) for TSH of 10.0 to 19.9 mIU/L (P for trend <0.01) and 1.31 (95% confidence interval, 0.88-1.95) for TSH of 0.10 to 0.44 mIU/L and 1.94 (95% confidence interval, 1.01-3.72) for TSH <0.10 mIU/L (P for trend=0.047). Risks remained similar after adjustment for cardiovascular risk factors. CONCLUSION: Risks of heart failure events were increased with both higher and lower TSH levels, particularly for TSH ≥10 and <0.10 mIU/L.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epidemiological studies in humans have demonstrated a relationship between pathological events during fetal development and increased cardiovascular risk later in life and have led to the so called "Fetal programming of cardiovascular disease hypothesis". The recent observation of generalised vascular dysfunction in young apparently healthy children conceived by assisted reproductive technologies (ART) provides a novel and potentially very important example of this hypothesis. This review summarises recent data in ART children demonstrating premature subclinical atherosclerosis in the systemic circulation and pulmonary vascular dysfunction predisposing to exaggerated hypoxia-induced pulmonary hypertension. These problems appear to be related to the ART procedure per se. Studies in ART mice demonstrating premature vascular aging and arterial hypertension further demonstrate the potential of ART to increase cardiovascular risk and have allowed to unravel epigenetic alterations of the eNOS gene as an underpinning mechanism. The roughly 25% shortening of the life span in ART mice challenged with a western style high-fat-diet demonstrates the potential importance of these alterations for the long-term outcome. Given the young age of the ART population, data on cardiovascular endpoints will not be available before 20 to 30 years from now. However, already now cohort studies of the ART population are needed to early detect cardiovascular alterations with the aim to prevent or at least optimally treat cardiovascular complications. Finally, a debate needs to be engaged on the future of ART and the consequences of its exponential growth for public health.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transcriptional coregulators control the activity of many transcription factors and are thought to have wide-ranging effects on gene expression patterns. We show here that muscle-specific loss of nuclear receptor corepressor 1 (NCoR1) in mice leads to enhanced exercise endurance due to an increase of both muscle mass and of mitochondrial number and activity. The activation of selected transcription factors that control muscle function, such as MEF2, PPARβ/δ, and ERRs, underpins these phenotypic alterations. NCoR1 levels are decreased in conditions that require fat oxidation, resetting transcriptional programs to boost oxidative metabolism. Knockdown of gei-8, the sole C. elegans NCoR homolog, also robustly increased muscle mitochondria and respiration, suggesting conservation of NCoR1 function. Collectively, our data suggest that NCoR1 plays an adaptive role in muscle physiology and that interference with NCoR1 action could be used to improve muscle function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Mutism and dense retrograde amnesia are found both in organic and dissociative contexts. Moreover, dissociative symptoms may be modulated by right prefrontal activity. A single case, M.R., developed left hemiparesis, mutism and retrograde amnesia after a high-voltage electric shock without evidence of lasting brain lesions. M.R. suddenly recovered from his mutism following a mild brain trauma 2 years later. Methods: M.R.'s neuropsychological pattern and anatomoclinical correlations were studied through (i) language and memory assessment to characterize his deficits, (ii) functional neuroimaging during a standard language paradigm, and (iii) assessment of frontal and left insular connectivity through diffusion tractography imaging and transcranial magnetic stimulation. A control evaluation was repeated after recovery. Findings: M.R. recovered from the left hemiparesis within 90 days of the accident, which indicated a transient right brain impairment. One year later, neurobehavioral, language and memory evaluations strongly suggested a dissociative component in the mutism and retrograde amnesia. Investigations (including MRI, fMRI, diffusion tensor imaging, EEG and r-TMS) were normal. Twenty-seven months after the electrical injury, M.R. had a very mild head injury which was followed by a rapid recovery of speech. However, the retrograde amnesia persisted. Discussion: This case indicates an interaction of both organic and dissociative mechanisms in order to explain the patient's symptoms. The study also illustrates dissociation in the time course of the two different dissociative symptoms in the same patient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intercellular Ca(2+) wave propagation between vascular smooth muscle cells (SMCs) is associated with the propagation of contraction along the vessel. Here, we characterize the involvement of gap junctions (GJs) in Ca(2+) wave propagation between SMCs at the cellular level. Gap junctional communication was assessed by the propagation of intercellular Ca(2+) waves and the transfer of Lucifer Yellow in A7r5 cells, primary rat mesenteric SMCs (pSMCs), and 6B5N cells, a clone of A7r5 cells expressing higher connexin43 (Cx43) to Cx40 ratio. Mechanical stimulation induced an intracellular Ca(2+) wave in pSMC and 6B5N cells that propagated to neighboring cells, whereas Ca(2+) waves in A7r5 cells failed to progress to neighboring cells. We demonstrate that Cx43 forms the functional GJs that are involved in mediating intercellular Ca(2+) waves and that co-expression of Cx40 with Cx43, depending on their expression ratio, may interfere with Cx43 GJ formation, thus altering junctional communication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Severe heart failure and cerebral stroke are broadly associated with the impairment of muscular function that conventional treatments struggle to restore. New technologies enable the construction of "smart" materials that could be of great help in treating diseases where the main problem is muscle weakness. These materials "behave" similarly to biological systems, because the material directly converts energy, for example electrical energy into movement. The extension and contraction occur silently like in natural muscles. The real challenge is to transfer this amazing technology into devices that restore or replace the mechanical function of failing muscle. Cardiac assist devices based on artificial muscle technology could envelope a weak heart and temporarily improve its systolic function, or, if placed on top of the atrium, restore the atrial kick in chronic atrial fibrillation. Artificial sphincters could be used to treat urinary incontinence after prostatectomy or faecal incontinence associated with stomas. Artificial muscles can restore the ability of patients with facial paralysis due to stroke or nerve injury to blink. Smart materials could be used to construct an artificial oesophagus including peristaltic movement and lower oesophageal sphincter function to replace the diseased oesophagus thereby avoiding the need for laparotomy to mobilise stomach or intestine. In conclusion, in the near future, smart devices will integrate with the human body to fill functional gaps due to organ failure, and so create a human chimera.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Percutaneous transluminal angioplasty is frequently used in patients with severe arterial narrowing due to atherosclerosis. However, it induces severe arterial injury and an inflammatory response leading to restenosis. Here, we studied a potential activation of the endocannabinoid system and the effect of FA amide hydrolase (FAAH) deficiency, the major enzyme responsible for endocannabinoid anandamide degradation, in arterial injury. We performed carotid balloon injury in atherosclerosis-prone apoE knockout (apoE(-/-)) and apoE(-/-)FAAH(-/-) mice. Anandamide levels were systemically elevated in apoE(-/-) mice after balloon injury. ApoE(-/-)FAAH(-/-) mice had significantly higher baseline anandamide levels and enhanced neointima formation compared with apoE(-/-) controls. The latter effect was inhibited by treatment with CB1 antagonist AM281. Similarly, apoE(-/-) mice treated with AM281 had reduced neointimal areas, reduced lesional vascular smooth-muscle cell (SMC) content, and proliferating cell counts. The lesional macrophage content was unchanged. In vitro proliferation rates were significantly reduced in CB1(-/-) SMCs or when treating apoE(-/-) or apoE(-/-)FAAH(-/-) SMCs with AM281. Macrophage in vitro adhesion and migration were marginally affected by CB1 deficiency. Reendothelialization was not inhibited by treatment with AM281. In conclusion, endogenous CB1 activation contributes to vascular SMC proliferation and neointima formation in response to arterial injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: The goal of this study was to determine whether subclinical thyroid dysfunction was associated with incident heart failure (HF) and echocardiogram abnormalities. BACKGROUND: Subclinical hypothyroidism and hyperthyroidism have been associated with cardiac dysfunction. However, long-term data on the risk of HF are limited. METHODS: We studied 3,044 adults>or=65 years of age who initially were free of HF in the Cardiovascular Health Study. We compared adjudicated HF events over a mean 12-year follow-up and changes in cardiac function over the course of 5 years among euthyroid participants, those with subclinical hypothyroidism (subdivided by thyroid-stimulating hormone [TSH] levels: 4.5 to 9.9, >or=10.0 mU/l), and those with subclinical hyperthyroidism. RESULTS: Over the course of 12 years, 736 participants developed HF events. Participants with TSH>or=10.0 mU/l had a greater incidence of HF compared with euthyroid participants (41.7 vs. 22.9 per 1,000 person years, p=0.01; adjusted hazard ratio: 1.88; 95% confidence interval: 1.05 to 3.34). Baseline peak E velocity, which is an echocardiographic measurement of diastolic function associated with incident HF in the CHS cohort, was greater in those patients with TSH>or=10.0 mU/l compared with euthyroid participants (0.80 m/s vs. 0.72 m/s, p=0.002). Over the course of 5 years, left ventricular mass increased among those with TSH>or=10.0 mU/l, but other echocardiographic measurements were unchanged. Those patients with TSH 4.5 to 9.9 mU/l or with subclinical hyperthyroidism had no increase in risk of HF. CONCLUSIONS: Compared with euthyroid older adults, those adults with TSH>or=10.0 mU/l have a moderately increased risk of HF and alterations in cardiac function but not older adults with TSH<10.0 mU/l. Clinical trials should assess whether the risk of HF might be ameliorated by thyroxine replacement in individuals with TSH>or=10.0 mU/l.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Implanted venous access devices (IVADs) are often used in patients who require long-term intravenous drug administration. The most common causes of device dysfunction include occlusion by fibrin sheath and/or catheter adherence to the vessel wall. We present percutaneous endovascular salvage techniques to restore function in occluded catheters. The aim of this study was to evaluate the feasibility, safety, and efficacy of these techniques. METHODS AND MATERIALS: Through a femoral or brachial venous access, a snare is used to remove fibrin sheath around the IVAD catheter tip. If device dysfunction is caused by catheter adherences to the vessel wall, a new "mechanical adhesiolysis" maneuver was performed. IVAD salvage procedures performed between 2005 and 2013 were analyzed. Data included clinical background, catheter tip position, success rate, recurrence, and rate of complication. RESULTS: Eighty-eight salvage procedures were performed in 80 patients, mostly women (52.5 %), with a mean age of 54 years. Only a minority (17.5 %) of evaluated catheters were located at an optimal position (i.e., cavoatrial junction ±1 cm). Mechanical adhesiolysis or other additional maneuvers were used in 21 cases (24 %). Overall technical success rate was 93.2 %. Malposition and/or vessel wall adherences were the main cause of technical failure. No complications were noted. CONCLUSION: These IVAD salvage techniques are safe and efficient. When a catheter is adherent to the vessel wall, mechanical adhesiolysis maneuvers allow catheter mobilization and a greater success rate with no additional risk. In patients who still require long-term use of their IVAD, these procedures can be performed safely to avoid catheter replacement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Skeletal Muscle Biopsy is a minor surgical procedure for the diagnosis of different neuromuscular pathological conditions and has recently gained popularity also in the research field of age-related muscular modifications and sarcopenia. Few studies focused on the application of mini-invasive muscular biopsy in both normal and pathological conditions. The aim of our study was to describe a mini invasive ultrasound-guided skeletal muscular biopsy technique in complete spinal cord injured (SCI) patients and healthy controls with a tri-axial end-cut needle. PATIENTS AND METHODS: Skeletal muscle biopsies were collected from 6 chronic SCI patients and 3 healthy controls vastus lateralis muscle with a tri-axial end cut needle (Biopince© - Angiotech). Muscle samples were stained for ATPase to determine fibers composition, moreover, gene expression of cyclooxygenase-1 (COX-1) and prostaglandin E2 receptor has been analyzed by Real Time RT-PCR. RESULTS: All the procedures were perfomed easily without failures and complications. Control tissue was macroscopically thicker than SCI one. Control specimen displayed an equal distribution of type I and type II fibers, while SCI sample displayed a prevalence of type II fibers SCI specimen displayed a significant reduction in COX-1 gene expression. This mini-invasive approach was easy, accurate and with low complication rate in performing skeletal muscle biopsy in both SCI patients and controls. CONCLUSIONS: This technique could be useful in conditions in which the overall quantity of specimen required is small like for molecular biology analysis. For histological diagnostic purposes and/or conditions in which the original tissue is already pathologically modified, this technique should be integrated with more invasive techniques.