975 resultados para Multi-Cloud
Resumo:
Pricing is an effective tool to control congestion and achieve quality of service (QoS) provisioning for multiple differentiated levels of service. In this paper, we consider the problem of pricing for congestion control in the case of a network of nodes with multiple queues and multiple grades of service. We present a closed-loop multi-layered pricing scheme and propose an algorithm for finding the optimal state dependent price levels for individual queues, at each node. This is different from most adaptive pricing schemes in the literature that do not obtain a closed-loop state dependent pricing policy. The method that we propose finds optimal price levels that are functions of the queue lengths at individual queues. Further, we also propose a variant of the above scheme that assigns prices to incoming packets at each node according to a weighted average queue length at that node. This is done to reduce frequent price variations and is in the spirit of the random early detection (RED) mechanism used in TCP/IP networks. We observe in our numerical results a considerable improvement in performance using both of our schemes over that of a recently proposed related scheme in terms of both throughput and delay performance. In particular, our first scheme exhibits a throughput improvement in the range of 67-82% among all routes over the above scheme. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
0.85PbMg(1/3)Nb(2/3)O(3)-0.15PbTiO(3) (0.85PMN-0.15PT) ferroelectric relaxor thin films have been deposited on La0.5Sr0.5CoO3/(111) Pt/TiO2/SiO2/Si by pulsed laser ablation by varying the oxygen partial pressures from 50 mTorr to 400 mTorr. The X-ray diffraction pattern reveals a pyrochlore free polycrystalline film. The grain morphology of the deposited films was studied using scanning electron microscopy and was found to be affected by oxygen pressure. By employing dynamic contact-electrostatic force microscopy we found that the distribution of polar nanoregions is majorly affected by oxygen pressure. Finally, the electric field induced switching in these films is discussed in terms of domain wall pinning.
Resumo:
South peninsular India experiences a large portion of the annual rainfall during the northeast monsoon season (October to December). In this study, the facets of diurnal, intra-seasonal and inter-annual variability of the northeast monsoon rainfall (the NEMR) over India have been examined. The analysis of satellite derived hourly rainfall reveals that there are distinct features of diurnal variation over the land and oceans during the season. Over the land, rainfall peaks during the late afternoon/evening, while over the oceans an early morning peak is observed. The harmonic analysis of hourly data reveals that the amplitude and variance are the largest over south peninsular India. The NEMR also exhibits significant intra-seasonal variability on a 20-40 day time scale. Analysis also shows significant northward propagation of the maximum cloud zone from south of equator to the south peninsula during the season. The NEMR exhibits large inter-annual variability with the co-efficient of variation (CV) of 25%. The positive phases of ENSO and the Indian Ocean Dipole (IOD) are conducive for normal to above normal rainfall activity during the northeast monsoon. There are multi-decadal variations in the statistical relationship between ENSO and the NEMR. During the period 2001-2010 the statistical relationship between ENSO and the NEMR has significantly weakened. The analysis of seasonal rainfall hindcasts for the period 1960-2005 produced by the state-of-the-art coupled climate models, ENSEMBLES, reveals that the coupled models have very poor skill in predicting the inter-annual variability of the NEMR. This is mainly due to the inability of the ENSEMBLES models to simulate the positive relationship between ENSO and the NEMR correctly. Copyright (C) 2012 Royal Meteorological Society
Resumo:
This study reports the activity of ionic substituted bimetallic Cu-Ni-modified ceria and Cu-Fe-modified ceria catalysts for low-temperature water gas shift (WGS) reaction. The catalysts were synthesized in nano-crystalline size by a sonochemical method and characterized by XRD, TEM, XPS, TPR and BET surface analyzer techniques. Due to the ionic substitution of these aliovalent base metals, lattice oxygen in CeO2 is activated and these catalysts show high activity for WGS at low temperature. An increase in the reducibility and oxygen storage capacity of bimetallic substituted CeO2, as evidenced by H-2-TPR experiments, is the primary reason for the higher activity towards WGS reaction. In the absence of feed CO2 and H-2, 100% conversion of CO with 100% H-2 selectivity was observed at 320 degrees C and 380 degrees C, for Cu-Ni-modified ceria and Cu-Fe-modified ceria catalysts. Notably, in the presence of feed H2O. a reverse WGS reaction does not occur over these ceria modified catalysts. A redox reaction mechanism, involving oxidation of CO adsorbed on the metal was developed to correlate the experimental data and determine kinetic parameters. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
In this study, severe plastic deformation (SPD) of Ti-bearing interstitial-free steel was carried out by multi-axial forging (MAF) technique. The grain refinement achieved was comparable to that by other SPD techniques. A considerable heterogeneity was observed in the microstructure and texture. Texture of multi-axially forged steels has been evaluated and reported for the first time. The material exhibited a six-fold increase in the yield strength after four cycles of MAF.
Resumo:
Computational grids with multiple batch systems (batch grids) can be powerful infrastructures for executing long-running multi-component parallel applications. In this paper, we evaluate the potential improvements in throughput of long-running multi-component applications when the different components of the applications are executed on multiple batch systems of batch grids. We compare the multiple batch executions with executions of the components on a single batch system without increasing the number of processors used for executions. We perform our analysis with a foremost long-running multi-component application for climate modeling, the Community Climate System Model (CCSM). We have built a robust simulator that models the characteristics of both the multi-component application and the batch systems. By conducting large number of simulations with different workload characteristics and queuing policies of the systems, processor allocations to components of the application, distributions of the components to the batch systems and inter-cluster bandwidths, we show that multiple batch executions lead to 55% average increase in throughput over single batch executions for long-running CCSM. We also conducted real experiments with a practical middleware infrastructure and showed that multi-site executions lead to effective utilization of batch systems for executions of CCSM and give higher simulation throughput than single-site executions. Copyright (c) 2011 John Wiley & Sons, Ltd.
Resumo:
The charge transport in sulfonated multi-wall carbon nanotube (sMWNT)-Nafion composite is reported. The scanning electron microscope images of the composite, at 1 and 10 wt % of sMWNT, show that the nanotubes are well dispersed in polymer matrix, with conductivity values of 0.005 and 3.2 S/cm, respectively; and the percolation threshold is nearly 0.42 wt. %. The exponent (∼0.25) of the temperature dependence of conductivity in both samples indicates Mott's variable range hopping (VRH) transport. The conductance in 1 wt. % sample increases by three orders of magnitude at high electric-fields, consistent with VRH model. The negative magnetoresistance in 10 wt. % sample is attributed to the forward interference scattering mechanism in VRH transport. The ac conductance in 1 wt. % sample is expressed by σ(ω)∝ωs, and the temperature dependence of s follows the correlated barrier hopping model.
Resumo:
This work reports the measured spray structure and droplet size distributions of ethanol-gasoline blends for a low-pressure, multi-hole, port fuel injector (PFI). This study presents previously unavailable data for this class of injectors which are widely used in automotive applications. Specifically, gasoline, ethanol, and gasoline-ethanol blends containing 10%, 20% and 50% ethanol were studied using laser backlight imaging, and particle/droplet image analysis (PDIA) techniques. The fuel mass injected, spray structure and tip penetrations, droplet size distributions, and Sauter mean diameter were determined for the blends, at two different injection pressures. Results indicate that the gasoline and ethanol sprays have similar characteristics in terms of spray progression and droplet sizes in spite of the large difference in viscosity. It appears that the complex mode of atomization utilized in these injectors involving interaction of multiple fuel jets is fairly insensitive to the fuel viscosity over a range of values. This result has interesting ramifications for existing gasoline fuel systems which need to handle blends and even pure ethanol, which is one of the renewable fuels of the future. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
This paper discusses an approach for river mapping and flood evaluation based on multi-temporal time series analysis of satellite images utilizing pixel spectral information for image classification and region-based segmentation for extracting water-covered regions. Analysis of MODIS satellite images is applied in three stages: before flood, during flood and after flood. Water regions are extracted from the MODIS images using image classification (based on spectral information) and image segmentation (based on spatial information). Multi-temporal MODIS images from ``normal'' (non-flood) and flood time-periods are processed in two steps. In the first step, image classifiers such as Support Vector Machines (SVMs) and Artificial Neural Networks (ANNs) separate the image pixels into water and non-water groups based on their spectral features. The classified image is then segmented using spatial features of the water pixels to remove the misclassified water. From the results obtained, we evaluate the performance of the method and conclude that the use of image classification (SVM and ANN) and region-based image segmentation is an accurate and reliable approach for the extraction of water-covered regions. (c) 2012 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
Linear quadratic stabilizers are well-known for their superior control capabilities when compared to the conventional lead-lag power system stabilizers. However, they have not seen much of practical importance as the state variables are generally not measurable; especially the generator rotor angle measurement is not available in most of the power plants. Full state feedback controllers require feedback of other machine states in a multi-machine power system and necessitate block diagonal structure constraints for decentralized implementation. This paper investigates the design of Linear Quadratic Power System Stabilizers using a recently proposed modified Heffron-Phillip's model. This model is derived by taking the secondary bus voltage of the step-up transformer as reference instead of the infinite bus. The state variables of this model can be obtained by local measurements. This model allows a coordinated linear quadratic control design in multi machine systems. The performance of the proposed controller has been evaluated on two widely used multi-machine power systems, 4 generator 10 bus and 10 generator 39 bus systems. It has been observed that the performance of the proposed controller is superior to that of the conventional Power System Stabilizers (PSS) over a wide range of operating and system conditions.
Resumo:
Climate projections for the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) are made using the newly developed representative concentration pathways (RCPs) under the Coupled Model Inter-comparison Project 5 (CMIP5). This article provides multi-model and multi-scenario temperature and precipitation projections for India for the period 1860-2099 based on the new climate data. We find that CMIP5 ensemble mean climate is closer to observed climate than any individual model. The key findings of this study are: (i) under the business-as-usual (between RCP6.0 and RCP8.5) scenario, mean warming in India is likely to be in the range 1.7-2 degrees C by 2030s and 3.3-4.8 degrees C by 2080s relative to pre-industrial times; (ii) all-India precipitation under the business-as-usual scenario is projected to increase from 4% to 5% by 2030s and from 6% to 14% towards the end of the century (2080s) compared to the 1961-1990 baseline; (iii) while precipitation projections are generally less reliable than temperature projections, model agreement in precipitation projections increases from RCP2.6 to RCP8.5, and from short-to long-term projections, indicating that long-term precipitation projections are generally more robust than their short-term counterparts and (iv) there is a consistent positive trend in frequency of extreme precipitation days (e.g. > 40 mm/day) for decades 2060s and beyond. These new climate projections should be used in future assessment of impact of climate change and adaptation planning. There is need to consider not just the mean climate projections, but also the more important extreme projections in impact studies and as well in adaptation planning.
Resumo:
A new type of multi-port isolated bidirectional DC-DC converter is proposed in this study. In the proposed converter, transfer of power takes place through addition of magnetomotive forces generated by multiple windings on a common transformer core. This eliminates the need for a centralised storage capacitor to interface all the ports. Hence, the requirement of an additional power transfer stage from the centralised capacitor can also be eliminated. The converter can be used for a multi-input, multi-output (MIMO) system. A pulse width modulation (PWM) strategy for controlling simultaneous power flow in the MIMO converter is also proposed. The proposed PWM scheme works in the discontinuous conduction mode. The leakage inductance can be chosen to aid power transfer. By using the proposed converter topology and PWM scheme, the need to compute power flow equations to determine the magnitude and direction of power flow between ports is alleviated. Instead, a simple controller structure based on average current control can be used to control the power flow. This study discusses the operating phases of the proposed multi-port converter along with its PWM scheme, the design process for each of the ports and finally experimental waveforms that validate the multi-port scheme.
Resumo:
This paper presents a decentralized/peer-to-peer architecture-based parallel version of the vector evaluated particle swarm optimization (VEPSO) algorithm for multi-objective design optimization of laminated composite plates using message passing interface (MPI). The design optimization of laminated composite plates being a combinatorially explosive constrained non-linear optimization problem (CNOP), with many design variables and a vast solution space, warrants the use of non-parametric and heuristic optimization algorithms like PSO. Optimization requires minimizing both the weight and cost of these composite plates, simultaneously, which renders the problem multi-objective. Hence VEPSO, a multi-objective variant of the PSO algorithm, is used. Despite the use of such a heuristic, the application problem, being computationally intensive, suffers from long execution times due to sequential computation. Hence, a parallel version of the PSO algorithm for the problem has been developed to run on several nodes of an IBM P720 cluster. The proposed parallel algorithm, using MPI's collective communication directives, establishes a peer-to-peer relationship between the constituent parallel processes, deviating from the more common master-slave approach, in achieving reduction of computation time by factor of up to 10. Finally we show the effectiveness of the proposed parallel algorithm by comparing it with a serial implementation of VEPSO and a parallel implementation of the vector evaluated genetic algorithm (VEGA) for the same design problem. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The multiport network approach is extended to analyze the behavior of microstrip fractal antennas. The capacitively fedmicrostrip square ring antenna has the side opposite to the feed arm replaced with a fractal Minkowski geometry. Dual frequency operation is achieved by suitably choosing the indentation of this fractal geometry. The width of the two sides adjacent to this is increased to further control the resonant characteristics and the ratio of the two resonance frequencies of this antenna. The impedance matrix for the multiport network model of this antenna is simplified exploiting self-similarity of the geometry with greater accuracy and reduced analysis time. Experimentally validated results confirm utility of the approach in analyzing the input characteristics of similar multi-frequency fractal microstrip antennas with other fractal geometries.
Resumo:
In pay-per-click sponsored search auctions which are currently extensively used by search engines, the auction for a keyword involves a certain number of advertisers (say k) competing for available slots (say m) to display their advertisements (ads for short). A sponsored search auction for a keyword is typically conducted for a number of rounds (say T). There are click probabilities mu(ij) associated with each agent slot pair (agent i and slot j). The search engine would like to maximize the social welfare of the advertisers, that is, the sum of values of the advertisers for the keyword. However, the search engine does not know the true values advertisers have for a click to their respective advertisements and also does not know the click probabilities. A key problem for the search engine therefore is to learn these click probabilities during the initial rounds of the auction and also to ensure that the auction mechanism is truthful. Mechanisms for addressing such learning and incentives issues have recently been introduced. These mechanisms, due to their connection to the multi-armed bandit problem, are aptly referred to as multi-armed bandit (MAB) mechanisms. When m = 1, exact characterizations for truthful MAB mechanisms are available in the literature. Recent work has focused on the more realistic but non-trivial general case when m > 1 and a few promising results have started appearing. In this article, we consider this general case when m > 1 and prove several interesting results. Our contributions include: (1) When, mu(ij)s are unconstrained, we prove that any truthful mechanism must satisfy strong pointwise monotonicity and show that the regret will be Theta T7) for such mechanisms. (2) When the clicks on the ads follow a certain click precedence property, we show that weak pointwise monotonicity is necessary for MAB mechanisms to be truthful. (3) If the search engine has a certain coarse pre-estimate of mu(ij) values and wishes to update them during the course of the T rounds, we show that weak pointwise monotonicity and type-I separatedness are necessary while weak pointwise monotonicity and type-II separatedness are sufficient conditions for the MAB mechanisms to be truthful. (4) If the click probabilities are separable into agent-specific and slot-specific terms, we provide a characterization of MAB mechanisms that are truthful in expectation.