982 resultados para Modeling problems
Resumo:
Hereditary non-structural diseases such as catecholaminergic polymorphic ventricular tachycardia (CPVT), long QT, and the Brugada syndrome as well as structural disease such as hypertrophic cardiomyopathy (HCM) and arrhythmogenic right ventricular cardiomyopathy (ARVC) cause a significant percentage of sudden cardiac deaths in the young. In these cases, genetic testing can be useful and does not require proxy consent if it is carried out at the request of judicial authorities as part of a forensic death investigation. Mutations in several genes are implicated in arrhythmic syndromes, including SCN5A, KCNQ1, KCNH2, RyR2, and genes causing HCM. If the victim's test is positive, this information is important for relatives who might be themselves at risk of carrying the disease-causing mutation. There is no consensus about how professionals should proceed in this context. This article discusses the ethical and legal arguments in favour of and against three options: genetic testing of the deceased victim only; counselling of relatives before testing the victim; counselling restricted to relatives of victims who tested positive for mutations of serious and preventable diseases. Legal cases are mentioned that pertain to the duty of geneticists and other physicians to warn relatives. Although the claim for a legal duty is tenuous, recent publications and guidelines suggest that geneticists and others involved in the multidisciplinary approach of sudden death (SD) cases may, nevertheless, have an ethical duty to inform relatives of SD victims. Several practical problems remain pertaining to the costs of testing, the counselling and to the need to obtain permission of judicial authorities.
Resumo:
In this paper, we are proposing a methodology to determine the most efficient and least costly way of crew pairing optimization. We are developing a methodology based on algorithm optimization on Eclipse opensource IDE using the Java programming language to solve the crew scheduling problems.
Resumo:
Black-box optimization problems (BBOP) are de ned as those optimization problems in which the objective function does not have an algebraic expression, but it is the output of a system (usually a computer program). This paper is focussed on BBOPs that arise in the eld of insurance, and more speci cally in reinsurance problems. In this area, the complexity of the models and assumptions considered to de ne the reinsurance rules and conditions produces hard black-box optimization problems, that must be solved in order to obtain the optimal output of the reinsurance. The application of traditional optimization approaches is not possible in BBOP, so new computational paradigms must be applied to solve these problems. In this paper we show the performance of two evolutionary-based techniques (Evolutionary Programming and Particle Swarm Optimization). We provide an analysis in three BBOP in reinsurance, where the evolutionary-based approaches exhibit an excellent behaviour, nding the optimal solution within a fraction of the computational cost used by inspection or enumeration methods.
Resumo:
We present models predicting the potential distribution of a threatened ant species, Formica exsecta Nyl., in the Swiss National Park ( SNP). Data to fit the models have been collected according to a random-stratified design with an equal number of replicates per stratum. The basic aim of such a sampling strategy is to allow the formal testing of biological hypotheses about those factors most likely to account for the distribution of the modeled species. The stratifying factors used in this study were: vegetation, slope angle and slope aspect, the latter two being used as surrogates of solar radiation, considered one of the basic requirements of F. exsecta. Results show that, although the basic stratifying predictors account for more than 50% of the deviance, the incorporation of additional non-spatially explicit predictors into the model, as measured in the field, allows for an increased model performance (up to nearly 75%). However, this was not corroborated by permutation tests. Implementation on a national scale was made for one model only, due to the difficulty of obtaining similar predictors on this scale. The resulting map on the national scale suggests that the species might once have had a broader distribution in Switzerland. Reasons for its particular abundance within the SNP might possibly be related to habitat fragmentation and vegetation transformation outside the SNP boundaries.
Resumo:
When encountering a set of alternatives displayed in the form of a list, the decision maker usually determines a particular alternative, after which she stops checking the remaining ones, and chooses an alternative from those observed so far. We present a framework in which both decision problems are explicitly modeled, and axiomatically characterize a stop-and-choose rule which unifies position-biased successive choice and satisficing choice.
Resumo:
The application of the Fry method to measure strain in deformed porphyritic granites is discussed. This method requires that the distribution of markers has to satisfy at least two conditions. It has to be homogeneous and isotropic. Statistics on point distribution with the help of a Morishita diagram can easily test homogeneity. Isotropy can be checked with a cumulative histogram of angles between points. Application of these tests to undeformed (Mte Capanne granite, Elba) and to deformed (Randa orthogneiss, Alps of Switzerland) porphyritic granite reveals that their K-feldspars phenocrysts both satisfy these conditions and can be used as strain markers with the Fry method. Other problems are also examined. One is the possible distribution of deformation on discrete shear-bands. Providing several tests are met, we conclude that the Fry method can be used to estimate strain in deformed porphyritic granites. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Mountains and mountain societies provide a wide range of goods and services to humanity, but they are particularly sensitive to the effects of global environmental change. Thus, the definition of appropriate management regimes that maintain the multiple functions of mountain regions in a time of greatly changing climatic, economic, and societal drivers constitutes a significant challenge. Management decisions must be based on a sound understanding of the future dynamics of these systems. The present article reviews the elements required for an integrated effort to project the impacts of global change on mountain regions, and recommends tools that can be used at 3 scientific levels (essential, improved, and optimum). The proposed strategy is evaluated with respect to UNESCO's network of Mountain Biosphere Reserves (MBRs), with the intention of implementing it in other mountain regions as well. First, methods for generating scenarios of key drivers of global change are reviewed, including land use/land cover and climate change. This is followed by a brief review of the models available for projecting the impacts of these scenarios on (1) cryospheric systems, (2) ecosystem structure and diversity, and (3) ecosystem functions such as carbon and water relations. Finally, the cross-cutting role of remote sensing techniques is evaluated with respect to both monitoring and modeling efforts. We conclude that a broad range of techniques is available for both scenario generation and impact assessments, many of which can be implemented without much capacity building across many or even most MBRs. However, to foster implementation of the proposed strategy, further efforts are required to establish partnerships between scientists and resource managers in mountain areas.
Resumo:
Most leadership and management researchers ignore one key design and estimation problem rendering parameter estimates uninterpretable: Endogeneity. We discuss the problem of endogeneity in depth and explain conditions that engender it using examples grounded in the leadership literature. We show how consistent causal estimates can be derived from the randomized experiment, where endogeneity is eliminated by experimental design. We then review the reasons why estimates may become biased (i.e., inconsistent) in non-experimental designs and present a number of useful remedies for examining causal relations with non-experimental data. We write in intuitive terms using nontechnical language to make this chapter accessible to a large audience.
Resumo:
Background: Germline genetic variation is associated with the differential expression of many human genes. The phenotypic effects of this type of variation may be important when considering susceptibility to common genetic diseases. Three regions at 8q24 have recently been identified to independently confer risk of prostate cancer. Variation at 8q24 has also recently been associated with risk of breast and colorectal cancer. However, none of the risk variants map at or relatively close to known genes, with c-MYC mapping a few hundred kilobases distally. Results: This study identifies cis-regulators of germline c-MYC expression in immortalized lymphocytes of HapMap individuals. Quantitative analysis of c-MYC expression in normal prostate tissues suggests an association between overexpression and variants in Region 1 of prostate cancer risk. Somatic c-MYC overexpression correlates with prostate cancer progression and more aggressive tumor forms, which was also a pathological variable associated with Region 1. Expression profiling analysis and modeling of transcriptional regulatory networks predicts a functional association between MYC and the prostate tumor suppressor KLF6. Analysis of MYC/Myc-driven cell transformation and tumorigenesis substantiates a model in which MYC overexpression promotes transformation by down-regulating KLF6. In this model, a feedback loop through E-cadherin down-regulation causes further transactivation of c-MYC.Conclusion: This study proposes that variation at putative 8q24 cis-regulator(s) of transcription can significantly alter germline c-MYC expression levels and, thus, contribute to prostate cancer susceptibility by down-regulating the prostate tumor suppressor KLF6 gene.
Resumo:
Building a personalized model to describe the drug concentration inside the human body for each patient is highly important to the clinical practice and demanding to the modeling tools. Instead of using traditional explicit methods, in this paper we propose a machine learning approach to describe the relation between the drug concentration and patients' features. Machine learning has been largely applied to analyze data in various domains, but it is still new to personalized medicine, especially dose individualization. We focus mainly on the prediction of the drug concentrations as well as the analysis of different features' influence. Models are built based on Support Vector Machine and the prediction results are compared with the traditional analytical models.