903 resultados para Modeling and Simulation


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Résumé Cette thèse est consacrée à l'analyse, la modélisation et la visualisation de données environnementales à référence spatiale à l'aide d'algorithmes d'apprentissage automatique (Machine Learning). L'apprentissage automatique peut être considéré au sens large comme une sous-catégorie de l'intelligence artificielle qui concerne particulièrement le développement de techniques et d'algorithmes permettant à une machine d'apprendre à partir de données. Dans cette thèse, les algorithmes d'apprentissage automatique sont adaptés pour être appliqués à des données environnementales et à la prédiction spatiale. Pourquoi l'apprentissage automatique ? Parce que la majorité des algorithmes d'apprentissage automatiques sont universels, adaptatifs, non-linéaires, robustes et efficaces pour la modélisation. Ils peuvent résoudre des problèmes de classification, de régression et de modélisation de densité de probabilités dans des espaces à haute dimension, composés de variables informatives spatialisées (« géo-features ») en plus des coordonnées géographiques. De plus, ils sont idéaux pour être implémentés en tant qu'outils d'aide à la décision pour des questions environnementales allant de la reconnaissance de pattern à la modélisation et la prédiction en passant par la cartographie automatique. Leur efficacité est comparable au modèles géostatistiques dans l'espace des coordonnées géographiques, mais ils sont indispensables pour des données à hautes dimensions incluant des géo-features. Les algorithmes d'apprentissage automatique les plus importants et les plus populaires sont présentés théoriquement et implémentés sous forme de logiciels pour les sciences environnementales. Les principaux algorithmes décrits sont le Perceptron multicouches (MultiLayer Perceptron, MLP) - l'algorithme le plus connu dans l'intelligence artificielle, le réseau de neurones de régression généralisée (General Regression Neural Networks, GRNN), le réseau de neurones probabiliste (Probabilistic Neural Networks, PNN), les cartes auto-organisées (SelfOrganized Maps, SOM), les modèles à mixture Gaussiennes (Gaussian Mixture Models, GMM), les réseaux à fonctions de base radiales (Radial Basis Functions Networks, RBF) et les réseaux à mixture de densité (Mixture Density Networks, MDN). Cette gamme d'algorithmes permet de couvrir des tâches variées telle que la classification, la régression ou l'estimation de densité de probabilité. L'analyse exploratoire des données (Exploratory Data Analysis, EDA) est le premier pas de toute analyse de données. Dans cette thèse les concepts d'analyse exploratoire de données spatiales (Exploratory Spatial Data Analysis, ESDA) sont traités selon l'approche traditionnelle de la géostatistique avec la variographie expérimentale et selon les principes de l'apprentissage automatique. La variographie expérimentale, qui étudie les relations entre pairs de points, est un outil de base pour l'analyse géostatistique de corrélations spatiales anisotropiques qui permet de détecter la présence de patterns spatiaux descriptible par une statistique. L'approche de l'apprentissage automatique pour l'ESDA est présentée à travers l'application de la méthode des k plus proches voisins qui est très simple et possède d'excellentes qualités d'interprétation et de visualisation. Une part importante de la thèse traite de sujets d'actualité comme la cartographie automatique de données spatiales. Le réseau de neurones de régression généralisée est proposé pour résoudre cette tâche efficacement. Les performances du GRNN sont démontrées par des données de Comparaison d'Interpolation Spatiale (SIC) de 2004 pour lesquelles le GRNN bat significativement toutes les autres méthodes, particulièrement lors de situations d'urgence. La thèse est composée de quatre chapitres : théorie, applications, outils logiciels et des exemples guidés. Une partie importante du travail consiste en une collection de logiciels : Machine Learning Office. Cette collection de logiciels a été développée durant les 15 dernières années et a été utilisée pour l'enseignement de nombreux cours, dont des workshops internationaux en Chine, France, Italie, Irlande et Suisse ainsi que dans des projets de recherche fondamentaux et appliqués. Les cas d'études considérés couvrent un vaste spectre de problèmes géoenvironnementaux réels à basse et haute dimensionnalité, tels que la pollution de l'air, du sol et de l'eau par des produits radioactifs et des métaux lourds, la classification de types de sols et d'unités hydrogéologiques, la cartographie des incertitudes pour l'aide à la décision et l'estimation de risques naturels (glissements de terrain, avalanches). Des outils complémentaires pour l'analyse exploratoire des données et la visualisation ont également été développés en prenant soin de créer une interface conviviale et facile à l'utilisation. Machine Learning for geospatial data: algorithms, software tools and case studies Abstract The thesis is devoted to the analysis, modeling and visualisation of spatial environmental data using machine learning algorithms. In a broad sense machine learning can be considered as a subfield of artificial intelligence. It mainly concerns with the development of techniques and algorithms that allow computers to learn from data. In this thesis machine learning algorithms are adapted to learn from spatial environmental data and to make spatial predictions. Why machine learning? In few words most of machine learning algorithms are universal, adaptive, nonlinear, robust and efficient modeling tools. They can find solutions for the classification, regression, and probability density modeling problems in high-dimensional geo-feature spaces, composed of geographical space and additional relevant spatially referenced features. They are well-suited to be implemented as predictive engines in decision support systems, for the purposes of environmental data mining including pattern recognition, modeling and predictions as well as automatic data mapping. They have competitive efficiency to the geostatistical models in low dimensional geographical spaces but are indispensable in high-dimensional geo-feature spaces. The most important and popular machine learning algorithms and models interesting for geo- and environmental sciences are presented in details: from theoretical description of the concepts to the software implementation. The main algorithms and models considered are the following: multi-layer perceptron (a workhorse of machine learning), general regression neural networks, probabilistic neural networks, self-organising (Kohonen) maps, Gaussian mixture models, radial basis functions networks, mixture density networks. This set of models covers machine learning tasks such as classification, regression, and density estimation. Exploratory data analysis (EDA) is initial and very important part of data analysis. In this thesis the concepts of exploratory spatial data analysis (ESDA) is considered using both traditional geostatistical approach such as_experimental variography and machine learning. Experimental variography is a basic tool for geostatistical analysis of anisotropic spatial correlations which helps to understand the presence of spatial patterns, at least described by two-point statistics. A machine learning approach for ESDA is presented by applying the k-nearest neighbors (k-NN) method which is simple and has very good interpretation and visualization properties. Important part of the thesis deals with a hot topic of nowadays, namely, an automatic mapping of geospatial data. General regression neural networks (GRNN) is proposed as efficient model to solve this task. Performance of the GRNN model is demonstrated on Spatial Interpolation Comparison (SIC) 2004 data where GRNN model significantly outperformed all other approaches, especially in case of emergency conditions. The thesis consists of four chapters and has the following structure: theory, applications, software tools, and how-to-do-it examples. An important part of the work is a collection of software tools - Machine Learning Office. Machine Learning Office tools were developed during last 15 years and was used both for many teaching courses, including international workshops in China, France, Italy, Ireland, Switzerland and for realizing fundamental and applied research projects. Case studies considered cover wide spectrum of the real-life low and high-dimensional geo- and environmental problems, such as air, soil and water pollution by radionuclides and heavy metals, soil types and hydro-geological units classification, decision-oriented mapping with uncertainties, natural hazards (landslides, avalanches) assessments and susceptibility mapping. Complementary tools useful for the exploratory data analysis and visualisation were developed as well. The software is user friendly and easy to use.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This report details the port interconnection of two subsystems: a power electronics subsystem (a back-to-back AC/AC converter (B2B), coupled to a phase of the power grid), and an electromechanical subsystem (a doubly-fed induction machine (DFIM), coupled mechanically to a flywheel and electrically to the power grid and to a local varying load). Both subsystems have been essentially described in previous reports (deliverables D 0.5 and D 4.3.1), although some previously unpublished details are presented here. The B2B is a variable structure system (VSS), due to the presence of control-actuated switches: however from a modelling and simulation, as well as a control-design, point of view, it is sensible to consider modulated transformers (MTF in the bond-graph language) instead of the pairs of complementary switches. The port-Hamiltonian models of both subsystems are presents and coupled through a power-preserving interconnection, and the Hamiltonian description of the whole system is obtained; detailed bond-graphs of all the subsystems and the complete system are provided.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Diplomityön tavoitteena oli tarkastella numeerisen virtauslaskennan avulla virtaukseen liittyviä ilmiöitä ja kaasun dispersiota. Diplomityön sisältö on jaettu viiteen osaan; johdantoon, teoriaan, katsaukseen virtauksen mallinnukseen huokoisessa materiaalissa liittyviin tutkimusselvityksiin, numeeriseen mallinnukseen sekä tulosten esittämiseen ja johtopäätöksiin. Diplomityön alussa kiinnitettiin huomiota erilaisiin kokeellisiin, numeerisiin ja teoreettisiin mallinnusmenetelmiin, joilla voidaan mallintaa virtausta huokoisessa materiaalissa. Kirjallisuusosassa tehtiin katsaus aikaisemmin julkaistuihin puoliempiirisiin ja empiirisiin tutkimusselvityksiin, jotka liittyvät huokoisen materiaalin aiheuttamaan painehäviöön. Numeerisessa virtauslaskenta osassa rakennettiin ja esitettiin huokoista materiaalia kuvaavat numeeriset mallit käyttäen kaupallista FLUENT -ohjelmistoa. Työn lopussa arvioitiin teorian, numeerisen virtauslaskennan ja kokeellisten tutkimusselvitysten tuloksia. Kolmiulotteisen huokoisen materiaalinnumeerisessa mallinnuksesta saadut tulokset vaikuttivat lupaavilta. Näiden tulosten perusteella tehtiin suosituksia ajatellen tulevaa virtauksen mallinnusta huokoisessa materiaalissa. Osa tässä diplomityössä esitetyistä tuloksista tullaan esittämään 55. Kanadan Kemiantekniikan konferenssissa Torontossa 1619 Lokakuussa 2005. ASME :n kansainvälisessä tekniikan alan julkaisussa. Työ on hyväksytty esitettäväksi esitettäväksi laskennallisen virtausmekaniikan (CFD) aihealueessa 'Peruskäsitteet'. Lisäksi työn yksityiskohtaiset tulokset tullaan lähettämään myös CES:n julkaisuun.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tässä työssä simuloitiin Valkealassa sijaitsevaa Tirvan pienvesivoimalaitosta ja sen vaikutusta sähkönjakeluverkkoon. Pienvesivoimalaitos mallinnettiin PSCAD-ympäristöön verkko- ja voimalaitostietojen perusteella. Sähköverkko kuvattiin malliin koko 110 kV:n siirtävän verkon ja Tirvan pienjänniteverkon väliltä. Mallin avulla tehtiin sarja hajautettua sähköntuotantoa koskevia tarkasteluita. Tarkasteluissa huomattiin voimalaitoksen verkkoonliitynnän aiheuttavan standardien ylärajoilla olevan transienttisen muutoksen voimalaitoksen jännitteisiin. Työssä tehtiin yksityiskohtaisempi jännitehäviöiden mittaus voimalaitoksen pullonkaulana toimivalle pienitehoiselle jakelumuuntajalle. Tuotannon lisäämisen yhteydessä näkyvän yllättävän jännitteen laskun syyt paikannettiin muuntajalla tapahtuviin loistehon siirrosta johtuviin ylimääräisiin jännitehäviöihin. Voimalaitoksella ei ole merkittävää vaikutusta vikatilanteiden virtoihin.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present dissertation is devoted to the systematic approach to the development of organic toxic and refractory pollutants abatement by chemical decomposition methods in aqueous and gaseous phases. The systematic approach outlines the basic scenario of chemical decomposition process applications with a step-by-step approximation to the most effective result with a predictable outcome for the full-scale application, confirmed by successful experience. The strategy includes the following steps: chemistry studies, reaction kinetic studies in interaction with the mass transfer processes under conditions of different control parameters, contact equipment design and studies, mathematical description of the process for its modelling and simulation, processes integration into treatment technology and its optimisation, and the treatment plant design. The main idea of the systematic approach for oxidation process introduction consists of a search for the most effective combination between the chemical reaction and the treatment device, in which the reaction is supposed to take place. Under this strategy,a knowledge of the reaction pathways, its products, stoichiometry and kinetics is fundamental and, unfortunately, often unavailable from the preliminary knowledge. Therefore, research made in chemistry on novel treatment methods, comprisesnowadays a substantial part of the efforts. Chemical decomposition methods in the aqueous phase include oxidation by ozonation, ozone-associated methods (O3/H2O2, O3/UV, O3/TiO2), Fenton reagent (H2O2/Fe2+/3+) and photocatalytic oxidation (PCO). In the gaseous phase, PCO and catalytic hydrolysis over zero valent ironsare developed. The experimental studies within the described methodology involve aqueous phase oxidation of natural organic matter (NOM) of potable water, phenolic and aromatic amino compounds, ethylene glycol and its derivatives as de-icing agents, and oxygenated motor fuel additives ¿ methyl tert-butyl ether (MTBE) ¿ in leachates and polluted groundwater. Gas-phase chemical decomposition includes PCO of volatile organic compounds and dechlorination of chlorinated methane derivatives. The results of the research summarised here are presented in fifteenattachments (publications and papers submitted for publication and under preparation).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of the study is to developa novel robust controller based on sliding mode control technique for the hydraulic servo system with flexible load and for a flexible manipulator with the lift and jib hydraulic actuators. For the purpose of general control design, a dynamic model is derived describing the principle physical behavior for both the hydraulic servo system and the flexible hydraulic manipulator. The mechanism of hydraulic servo systems is described by basic mathematical equations of fluid powersystems and the dynamics of flexible manipulator is modeled by the assumed modemethod. The controller is constructed so as to track desired trajectories in the presence of model imprecision. Experimental and simulation results demonstratethat sliding mode control has benefits which can be used to guarantee stabilityin uncertain systems and improve the system performance and load tolerance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In recent years, Business Model Canvas design has evolved from being a paper-based activity to one that involves the use of dedicated computer-aided business model design tools. We propose a set of guidelines to help design more coherent business models. When combined with functionalities offered by CAD tools, they show great potential to improve business model design as an ongoing activity. However, in order to create complex solutions, it is necessary to compare basic business model design tasks, using a CAD system over its paper-based counterpart. To this end, we carried out an experiment to measure user perceptions of both solutions. Performance was evaluated by applying our guidelines to both solutions and then carrying out a comparison of business model designs. Although CAD did not outperform paper-based design, the results are very encouraging for the future of computer-aided business model design.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Työn tarkoituksena oli selvittää kaupallisen dynamiikan simulointiohjelmiston (Adams) soveltuvuus siltanosturin mallintamiseen. Työn kohteena oli kaksipalkkinen siltanosturi, joka sijaitsi KCI:n tiloissa Hyvinkäällä. Nosturin jänneväli oli noin 19.5 metriä ja nostokyky 16 tonnia. Mallintamisessa keskityttiin nosturin dynamiikkaan sekä ohjausvoimiin nosturin kantopyörissä. Simulointitulokset verifioitiin mittauksin. Koska mallista haluttiin mahdollisimman yksinkertainen, mallinnettiin ainoastaan pääkannattajat ja köydet joustavina. Muut osat mallinnettiin jäykkinä. Yksinkertaisuuteen pyrittiin sen vuoksi, että mallia oli tarkoitus käyttää perustana komponenttikirjaston luomiseksi myöhempää käyttöä varten. Tuloksista todettiin mallin soveltuvan hyvin nosturin dynamiikan mallintamiseen. Mallista saatavat tulokset vastasivat hyvin mitattuja liikkeitä. Ohjausvoimia ei kuitenkaan saatu verifioitua. Käytetty mittausmenetelmä osoittautui sopimattomaksi.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Given the climatic changes around the world and the growing outdoor sports participation, existing guidelines and recommendations for exercising in naturally challenging environments such as heat, cold or altitude, exhibit potential shortcomings. Continuous efforts from sport sciences and exercise physiology communities aim at minimizing the risks of environmental-related illnesses during outdoor sports practices. Despite this, the use of simple weather indices does not permit an accurate estimation of the likelihood of facing thermal illnesses. This provides a critical foundation to modify available human comfort modeling and to integrate bio-meteorological data in order to improve the current guidelines. Although it requires further refinement, there is no doubt that standardizing the recently developed Universal Thermal Climate Index approach and its application in the field of sport sciences and exercise physiology may help to improve the appropriateness of the current guidelines for outdoor, recreational and competitive sports participation. This review first summarizes the main environmental-related risk factors that are susceptible to increase with recent climate changes when exercising outside and offers recommendations to combat them appropriately. Secondly, we briefly address the recent development of thermal stress models to assess the thermal comfort and physiological responses when practicing outdoor activities in challenging environments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A photochemical reaction mechanism for the description of air quality in Brazilian urban regions is described and evaluated by comparison with chamber experiments. The mechanism was developed for use in ozone modeling and application of control strategies. The oxidation of ethanol and methyl-ter-butyl-ether is also considered. Using this chemical model, a trajectory simulation of Brazil Avenue, Rio de Janeiro, was performed. The model predicts that ozone should reach a maximum of 22.4 ppb at 14:57 h. This value is in good agreement with the experimental measurements of 22.5 ppb for 14:00 h and 22.3 ppb for 15:00 h.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fine powders of minerals are used commonly in the paper and paint industry, and for ceramics. Research for utilizing of different waste materials in these applications is environmentally important. In this work, the ultrafine grinding of two waste gypsum materials, namely FGD (Flue Gas Desulphurisation) gypsum and phosphogypsum from a phosphoric acid plant, with the attrition bead mill and with the jet mill has been studied. The ' objective of this research was to test the suitability of the attrition bead mill and of the jet mill to produce gypsum powders with a particle size of a few microns. The grinding conditions were optimised by studying the influences of different operational grinding parameters on the grinding rate and on the energy consumption of the process in order to achieve a product fineness such as that required in the paper industry with as low energy consumption as possible. Based on experimental results, the most influential parameters in the attrition grinding were found to be the bead size, the stirrer type, and the stirring speed. The best conditions, based on the product fineness and specific energy consumption of grinding, for the attrition grinding process is to grind the material with small grinding beads and a high rotational speed of the stirrer. Also, by using some suitable grinding additive, a finer product is achieved with a lower energy consumption. In jet mill grinding the most influential parameters were the feed rate, the volumetric flow rate of the grinding air, and the height of the internal classification tube. The optimised condition for the jet is to grind with a small feed rate and with a large rate of volumetric flow rate of grinding air when the inside tube is low. The finer product with a larger rate of production was achieved with the attrition bead mill than with the jet mill, thus the attrition grinding is better for the ultrafine grinding of gypsum than the jet grinding. Finally the suitability of the population balance model for simulation of grinding processes has been studied with different S , B , and C functions. A new S function for the modelling of an attrition mill and a new C function for the modelling of a jet mill were developed. The suitability of the selected models with the developed grinding functions was tested by curve fitting the particle size distributions of the grinding products and then comparing the fitted size distributions to the measured particle sizes. According to the simulation results, the models are suitable for the estimation and simulation of the studied grinding processes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Current technology trends in medical device industry calls for fabrication of massive arrays of microfeatures such as microchannels on to nonsilicon material substrates with high accuracy, superior precision, and high throughput. Microchannels are typical features used in medical devices for medication dosing into the human body, analyzing DNA arrays or cell cultures. In this study, the capabilities of machining systems for micro-end milling have been evaluated by conducting experiments, regression modeling, and response surface methodology. In machining experiments by using micromilling, arrays of microchannels are fabricated on aluminium and titanium plates, and the feature size and accuracy (width and depth) and surface roughness are measured. Multicriteria decision making for material and process parameters selection for desired accuracy is investigated by using particle swarm optimization (PSO) method, which is an evolutionary computation method inspired by genetic algorithms (GA). Appropriate regression models are utilized within the PSO and optimum selection of micromilling parameters; microchannel feature accuracy and surface roughness are performed. An analysis for optimal micromachining parameters in decision variable space is also conducted. This study demonstrates the advantages of evolutionary computing algorithms in micromilling decision making and process optimization investigations and can be expanded to other applications

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Membrane bioreactors (MBRs) are a combination of activated sludge bioreactors and membrane filtration, enabling high quality effluent with a small footprint. However, they can be beset by fouling, which causes an increase in transmembrane pressure (TMP). Modelling and simulation of changes in TMP could be useful to describe fouling through the identification of the most relevant operating conditions. Using experimental data from a MBR pilot plant operated for 462days, two different models were developed: a deterministic model using activated sludge model n°2d (ASM2d) for the biological component and a resistance in-series model for the filtration component as well as a data-driven model based on multivariable regressions. Once validated, these models were used to describe membrane fouling (as changes in TMP over time) under different operating conditions. The deterministic model performed better at higher temperatures (>20°C), constant operating conditions (DO set-point, membrane air-flow, pH and ORP), and high mixed liquor suspended solids (>6.9gL-1) and flux changes. At low pH (<7) or periods with higher pH changes, the data-driven model was more accurate. Changes in the DO set-point of the aerobic reactor that affected the TMP were also better described by the data-driven model. By combining the use of both models, a better description of fouling can be achieved under different operating conditions

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Environmental problems and issues have received more and more attention during the last decades. Reasons for this are different increased external costs such as congestion, CO2 emission, noise and accident costs. Transportation sector is the only sector with increasing external costs. The EU will increase its attention in decreasing the external costs of transport. Aim of this research was to find out if a dry port solution could decrease costs of transport, especially external costs. Dry port concept is an intermodal transport system, where inland transport between port and dry port is performed by rail transport instead of traditional road transport. In addition, dry ports offer similar services as ports. Research is conducted by performing a literature review about dry port concept and costs of transport, especially external costs of transport. Financial and environmental impacts of the dry port concept are studied by comparing costs of road and rail transport by cost accounting and with a simulation model. Location of dry port is researched with gravitational models. Results of the literature review are that rail transport is environmentally friendlier mode of transport than road transport. Cost model and simulation model show that if only costs of freight movement are considered, rail transport is more inexpensive transport mode than road transport in terms of internal and external costs. Because of that dry port concept could decrease costs of transport, especially external costs. Results of gravitational models are that city of Kouvola is in a good position to be a dry port. Russian transit traffic through Finland improves location of Kouvola to be a dry port.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Broadcasting systems are networks where the transmission is received by several terminals. Generally broadcast receivers are passive devices in the network, meaning that they do not interact with the transmitter. Providing a certain Quality of Service (QoS) for the receivers in heterogeneous reception environment with no feedback is not an easy task. Forward error control coding can be used for protection against transmission errors to enhance the QoS for broadcast services. For good performance in terrestrial wireless networks, diversity should be utilized. The diversity is utilized by application of interleaving together with the forward error correction codes. In this dissertation the design and analysis of forward error control and control signalling for providing QoS in wireless broadcasting systems are studied. Control signaling is used in broadcasting networks to give the receiver necessary information on how to connect to the network itself and how to receive the services that are being transmitted. Usually control signalling is considered to be transmitted through a dedicated path in the systems. Therefore, the relationship of the signaling and service data paths should be considered early in the design phase. Modeling and simulations are used in the case studies of this dissertation to study this relationship. This dissertation begins with a survey on the broadcasting environment and mechanisms for providing QoS therein. Then case studies present analysis and design of such mechanisms in real systems. The mechanisms for providing QoS considering signaling and service data paths and their relationship at the DVB-H link layer are analyzed as the first case study. In particular the performance of different service data decoding mechanisms and optimal signaling transmission parameter selection are presented. The second case study investigates the design of signaling and service data paths for the more modern DVB-T2 physical layer. Furthermore, by comparing the performances of the signaling and service data paths by simulations, configuration guidelines for the DVB-T2 physical layer signaling are given. The presented guidelines can prove useful when configuring DVB-T2 transmission networks. Finally, recommendations for the design of data and signalling paths are given based on findings from the case studies. The requirements for the signaling design should be derived from the requirements for the main services. Generally, these requirements for signaling should be more demanding as the signaling is the enabler for service reception.