933 resultados para Mixture interpretation
Resumo:
We analyze the global phase diagram of a Maier-Saupe lattice model with the inclusion of shape-disordered degrees of freedom to mimic a mixture of oblate and prolate molecules (discs and cylinders). In the neighborhood of a Landau multicritical point, solutions of the statistical problem can be written as a Landau-de Gennes expansion for the free energy. If the shape-disordered degrees of freedom are quenched, we confirm the existence of a biaxial nematic structure. If orientational and disorder degrees of freedom are allowed to thermalize, this biaxial solution becomes thermodynamically unstable. Also, we use a two-temperature formalism to mimic the presence of two distinct relaxation times, and show that a slight departure from complete thermalization is enough to stabilize a biaxial nematic phase.
Resumo:
Lyotropic liquid crystalline quaternary mixtures of potassium laurate (KL), potassium sulphate (K2SO4)/alcohol (n-OH)/water, with the alcohols having different numbers of carbon atoms in the alkyl chain (n), from 1-octanol to 1-hexadecanol, were investigated by optical techniques (optical microscopy and laser conoscopy). The biaxial nematic phase domain is present in a window of values of n = n(KL) +/- 2, where n(KL) = 11 is the number of carbon atoms in the alkyl chain of KL. The biaxial phase domain became smaller and the uniaxial-to-biaxial phase transition temperatures shifted to relatively higher temperatures upon going from 1-nonanol to 1-tridecanol. Moreover, compared with other lyotropic mixtures these new mixtures present high birefringence values, which we expect to be related to the micellar shape anisotropy. Our results are interpreted assuming that alcohol molecules tend to segregate in the micelles in a way that depends on the relative value of n with respect to nKL. The larger the value of n, the more alcohol molecules tend to be located in the curved parts of the micelle, favoring the uniaxial nematic calamitic phase with respect to the biaxial and uniaxial discotic nematic phases.
Resumo:
This article develops an ecological economic interpretation of the Jevons effect. Moreover, it is argued that under the neoclassical paradigm there are no elements with which to foresee the long-term existence of this phenomenon. The objective of these arguments is to demonstrate that the Jevons effect can be used to compare the ability of neoclassical and ecological economics describing the social appropriation of nature. This is elaborated in two steps. First, we show the importance of the thesis that the economy cannot be cut off from the biophysical materiality of what is produced to give consistency to the so-called Khazzoom-Brookes postulate. It is made clear that this supposition is exogenous to the neoclassical paradigm. Second, the supposition of the biophysical materiality of what is produced is utilized to make an ecological economic interpretation of the Jevons effect. Afterwards, a comparison is made between the neoclassical and the ecological economic perspectives. This comparison leads to the following conclusions: (i) the persistent presence of the Jevons effect in the long run is an anomaly in the neoclassical paradigm; (ii) the observation of the non-existence of the Jevons effect is a refutation of the supposition that economic growth and biophysical materiality are not separable, a central thesis defended by ecological economists. This situation makes possible to use the Jevons effect as a 'laboratory test' to compare the ability of neoclassical and ecological economic paradigms to describe the social appropriation of nature. (C) 20111 Elsevier B.V. All rights reserved.
Resumo:
Objective Immune responses against differentiated thyroid carcinomas (DTC) have long been recognized. We aimed to investigate the role of immune cell infiltration in the progression of DTC. Design We studied 398 patients 253 with papillary and 13 with follicular thyroid cancers, as well as 132 with nonmalignant tissues. Patients and measurements Immune cell infiltration was identified using CD3, CD4, CD8, CD20, CD68 and FoxP3 immunohistochemical markers. In addition, we assessed colocalization of CD4 and IL-17 to identify Th17 lymphocytic infiltration and colocalization of CD33 and CD11b to identify infiltration of myeloid-derived suppressor cells (MDSC). Results Immune cells infiltrated malignant tissues more often than benign lesions. The presence of chronic lymphocytic thyroiditis (CLT) concurrent to DTC, CD68+, CD4+, CD8+, CD20+, FoxP3+ and Th17 lymphocytes but not MDSCs was associated with clinical and pathological features of lower tumour aggressiveness and a more favourable patient outcome. A log-rank test confirmed an association between concurrent CLT, tumour-associated macrophage infiltration, and CD8+ lymphocytes and an increased in disease-free survival, suggesting that evidence of these immune reactions is associated with a favourable prognosis. Conclusion Our data suggest that the tumour or peri-tumoural microenvironment may act to modify the observed pattern of immune response. Immune cell infiltration and the presence of concurrent CLT helped characterize specific tumour histotypes associated with favourable prognostic features.
Resumo:
To interpret the mean depth of cosmic ray air shower maximum and its dispersion, we parametrize those two observables as functions of the rst two moments of the lnA distribution. We examine the goodness of this simple method through simulations of test mass distributions. The application of the parameterization to Pierre Auger Observatory data allows one to study the energy dependence of the mean lnA and of its variance under the assumption of selected hadronic interaction models. We discuss possible implications of these dependences in term of interaction models and astrophysical cosmic ray sources.
Resumo:
Máster en Gestión Sostenible de Recursos Pesqueros
Resumo:
Máster en Gestión Sostenible de Recursos Pesqueros
Resumo:
[EN]Here we present experimental data of different properties for a set of binary mixtures composed of water or alkanols (methanol to butanol) with an ionic liquid (IL), butylpyridinium tetrafluoroborate [bpy][BF4]. Solubility data (xIL,T) are presented for each of the mixtures, including water, which is found to have a small interval of compositions in IL, xIL, with immiscibility. In each case, the upper critical solubility temperature (UCST) is determined and a correlation was observed between the UCST and the nature of the compounds in the mixtures. Miscibility curves establish the composition and temperature intervals where thermodynamic properties of the mixtures, such as enthalpies Hm E and volumes Vm E, can be determined.
Resumo:
[EN]This work presents the measurements made to define the temperature−composition curves for a set of binary systems composed of several pyridinium-based ionic liquids (ILs) [bpy][BF4] and [bYmpy][BF4] (Y = 2,3,4) with mono- and dihaloalkanes (Cl and Br) in the temperature interval [280−473] K and at atmospheric pressure. With the exception of the short chain dichloroalkanes (1,1- and 1,2-), all the compounds present some degree of immiscibility with the ionic liquids selected.
Resumo:
Osteoarthritis (OA) or degenerative joint disease (DJD) is a pathology which affects the synovial joints and characterised by a focal loss of articular cartilage and subsequent bony reaction of the subcondral and marginal bone. Its etiology is best explained by a multifactorial model including: age, sex, genetic and systemic factors, other predisposing diseases and functional stress. In this study the results of the investigation of a modern identified skeletal collection will be presented. In particular, we will focus on the relationship between the presence of OA at various joints. The joint modifications have been analysed using a new methodology that allows the scoring of different degrees of expression of the features considered. Materials and Methods The sample examined comes from the Sassari identified skeletal collection (part of “Frassetto collections”). The individuals were born between 1828 and 1916 and died between 1918 and 1932. Information about sex and age is known for all the individuals. The occupation is known for 173 males and 125 females. Data concerning the occupation of the individuals indicate a preindustrial and rural society. OA has been diagnosed when eburnation (EB) or loss of morphology (LM) were present, or when at least two of the following: marginal lipping (ML), esostosis (EX) or erosion (ER), were present. For each articular surface affected a “mean score” was calculated, reflecting the “severity” of the alterations. A further “score” was calculated for each joint. In the analysis sexes and age classes were always kept separate. For the statistical analyses non parametric test were used. Results The results show there is an increase of OA with age in all the joints analyzed and in particular around 50 years and 60 years. The shoulder, the hip and the knee are the joints mainly affected with ageing while the ankle is the less affected; the correlation values confirm this result. The lesion which show the major correlation with age is the ML. In our sample males are more frequently and more severely affected by OA than females, particularly at the superior limbs, while hip and knee are similarly affected in the two sexes. Lateralization shows some positive results in particular in the right shoulder of males and in various articular surfaces especially of the superior limb of both males and females; articular surfaces and joints are quite always lateralized to the right. Occupational analyses did not show remarkable results probably because of the homogeneity of the sample; males although performing different activities are quite all employed in stressful works. No highest prevalence of knee and hip OA was found in farm-workers respect to the other males. Discussion and Conclusion In this work we propose a methodology to score the different features, necessary to diagnose OA, that allows the investigation of the severity of joint degeneration. This method is easier than the one proposed by Buikstra and Ubelaker (1994), but in the same time allows a quite detailed recording of the features. Epidemiological results can be interpreted quite simply and they are in accordance with other studies; more difficult is the interpretation of the occupational results because many questions concerning the activities performed by the individuals of the collection during their lifespan cannot be solved. Because of this, caution is suggested in the interpretation of bioarcheological specimens. With this work we hope to contribute to the discussion on the puzzling problem of the etiology of OA. The possibility of studying identified skeletons will add important data to the description of osseous features of OA, enriching the medical documentation, based on different criteria. Even if we are aware that the clinical diagnosis is different from the palaeopathological one we think our work will be useful in clarifying some epidemiological as well as pathological aspects of OA.
Resumo:
In this thesis, we investigated the evaporation of sessile microdroplets on different solid substrates. Three major aspects were studied: the influence of surface hydrophilicity and heterogeneity on the evaporation dynamics for an insoluble solid substrate, the influence of external process parameters and intrinsic material properties on microstructuring of soluble polymer substrates and the influence of an increased area to volume ratio in a microfluidic capillary, when evaporation is hindered. In the first part, the evaporation dynamics of pure sessile water drops on smooth self-assembled monolayers (SAMs) of thiols or disulfides on gold on mica was studied. With increasing surface hydrophilicity the drop stayed pinned longer. Thus, the total evaporation time of a given initial drop volume was shorter, since the drop surface, through which the evaporation occurs, stays longer large. Usually, for a single drop the volume decreased linearly with t1.5, t being the evaporation time, for a diffusion-controlled evaporation process. However, when we measured the total evaporation time, ttot, for multiple droplets with different initial volumes, V0, we found a scaling of the form V0 = attotb. The more hydrophilic the substrate was, the more showed the scaling exponent a tendency to an increased value up to 1.6. This can be attributed to an increasing evaporation rate through a thin water layer in the vicinity of the drop. Under the assumption of a constant temperature at the substrate surface a cooling of the droplet and thus a decreased evaporation rate could be excluded as a reason for the different scaling exponent by simulations performed by F. Schönfeld at the IMM, Mainz. In contrast, for a hairy surface, made of dialkyldisulfide SAMs with different chain lengths and a 1:1 mixture of hydrophilic and hydrophobic end groups (hydroxy versus methyl group), the scaling exponent was found to be ~ 1.4. It increased to ~ 1.5 with increasing hydrophilicity. A reason for this observation can only be speculated: in the case of longer hydrophobic alkyl chains the formation of an air layer between substrate and surface might be favorable. Thus, the heat transport to the substrate might be reduced, leading to a stronger cooling and thus decreased evaporation rate. In the second part, the microstructuring of polystyrene surfaces by drops of toluene, a good solvent, was investigated. For this a novel deposition technique was developed, with which the drop can be deposited with a syringe. The polymer substrate is lying on a motorized table, which picks up the pendant drop by an upward motion until a liquid bridge is formed. A consecutive downward motion of the table after a variable delay, i.e. the contact time between drop and polymer, leads to the deposition of the droplet, which can evaporate. The resulting microstructure is investigated in dependence of the processes parameters, i.e. the approach and the retraction speed of the substrate and the delay between them, and in dependence of the intrinsic material properties, i.e. the molar mass and the type of the polymer/solvent system. The principal equivalence with the microstructuring by the ink-jet technique was demonstrated. For a high approach and retraction speed of 9 mm/s and no delay between them, a concave microtopology was observed. In agreement with the literature, this can be explained by a flow of solvent and the dissolved polymer to the rim of the pinned droplet, where polymer is accumulated. This effect is analogue to the well-known formation of ring-like stains after the evaporation of coffee drops (coffee-stain effect). With decreasing retraction speed down to 10 µm/s the resulting surface topology changes from concave to convex. This can be explained with the increasing dissolution of polymer into the solvent drop prior to the evaporation. If the polymer concentration is high enough, gelation occurs instead of a flow to the rim and the shape of the convex droplet is received. With increasing delay time from below 0 ms to 1s the depth of the concave microwells decreases from 4.6 µm to 3.2 µm. However, a convex surface topology could not be obtained, since for longer delay times the polymer sticks to the tip of the syringe. Thus, by changing the delay time a fine-tuning of the concave structure is accomplished, while by changing the retraction speed a principal change of the microtopolgy can be achieved. We attribute this to an additional flow inside the liquid bridge, which enhanced polymer dissolution. Even if the pendant drop is evaporating about 30 µm above the polymer surface without any contact (non-contact mode), concave structures were observed. Rim heights as high as 33 µm could be generated for exposure times of 20 min. The concave structure exclusively lay above the flat polymer surface outside the structure even after drying. This shows that toluene is taken up permanently. The increasing rim height, rh, with increasing exposure time to the solvent vapor obeys a diffusion law of rh = rh0 tn, with n in the range of 0.46 ~ 0.65. This hints at a non-Fickian swelling process. A detailed analysis showed that the rim height of the concave structure is modulated, unlike for the drop deposition. This is due to the local stress relaxation, which was initiated by the increasing toluene concentration in the extruded polymer surface. By altering the intrinsic material parameters i.e. the polymer molar mass and the polymer/solvent combination, several types of microstructures could be formed. With increasing molar mass from 20.9 kDa to 1.44 MDa the resulting microstructure changed from convex, to a structure with a dimple in the center, to concave, to finally an irregular structure. This observation can be explained if one assumes that the microstructuring is dominated by two opposing effects, a decreasing solubility with increasing polymer molar mass, but an increasing surface tension gradient leading to instabilities of Marangoni-type. Thus, a polymer with a low molar mass close or below the entanglement limit is subject to a high dissolution rate, which leads to fast gelation compared to the evaporation rate. This way a coffee-rim like effect is eliminated early and a convex structure results. For high molar masses the low dissolution rate and the low polymer diffusion might lead to increased surface tension gradients and a typical local pile-up of polymer is found. For intermediate polymer masses around 200 kDa, the dissolution and evaporation rate are comparable and the typical concave microtopology is found. This interpretation was supported by a quantitative estimation of the diffusion coefficient and the evaporation rate. For a different polymer/solvent system, polyethylmethacrylate (PEMA)/ethylacetate (EA), exclusively concave structures were found. Following the statements above this can be interpreted with a lower dissolution rate. At low molar masses the concentration of PEMA in EA most likely never reaches the gelation point. Thus, a concave instead of a convex structure occurs. At the end of this section, the optically properties of such microstructures for a potential application as microlenses are studied with laser scanning confocal microscopy. In the third part, the droplet was confined into a glass microcapillary to avoid evaporation. Since here, due to an increased area to volume ratio, the surface properties of the liquid and the solid walls became important, the influence of the surface hydrophilicity of the wall on the interfacial tension between two immiscible liquid slugs was investigated. For this a novel method for measuring the interfacial tension between the two liquids within the capillary was developed. This technique was demonstrated by measuring the interfacial tensions between slugs of pure water and standard solvents. For toluene, n-hexane and chloroform 36.2, 50.9 and 34.2 mN/m were measured at 20°C, which is in a good agreement with data from the literature. For a slug of hexane in contact with a slug of pure water containing ethanol in a concentration range between 0 and 70 (v/v %), a difference of up to 6 mN/m was found, when compared to commercial ring tensiometry. This discrepancy is still under debate.