886 resultados para Microgeneration simulation systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolution of cellular systems towards third generation (3G) or IMT-2000 seems to have a tendency to use W-CDMA as the standard access method, as ETSI decisions have showed. However, there is a question about the improvements in capacity and the wellness of this access method. One of the aspects that worry developers and researchers planning the third generation is the extended use of the Internet and more and more bandwidth hungry applications. This work shows the performance of a W-CDMA system simulated in a PC using cover maps generated with DC-Cell, a GIS based planning tool developed by the Technical University of Valencia, Spain. The maps are exported to MATLAB and used in the model. The system used consists of several microcells in a downtown area. We analyse the interference from users in the same cell and in adjacent cells and the effect in the system, assuming perfect control for each cell. The traffic generated by the simulator is voice and data. This model allows us to work with coverage that is more accurate and is a good approach to analyse the multiple access interference (MAI) problem in microcellular systems with irregular coverage. Finally, we compare the results obtained, with the performance of a similar system using TDMA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show a simulation model for capacity analysis in mobile systems using a geographic information system (GIS) based tool, used for coverage calculations and frequency assignment, and MATLAB. The model was developed initially for “narrowband” CDMA and TDMA, but was modified for WCDMA. We show also some results for a specific case in “narrowband” CDMA

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In previous papers we describe a model for capacity analysis in CDMA systems using DC-Cell, a GIS based planning tool developed at Universidad Politecnica de Valencia, and MATLAB. We show some initial results of that model, and now, we are exploring different parameters like cell size, proximity between cells, number of cells in the system and “clustering” CDMA in order to improve the planning process for third generation systems. In this paper we show the results for variations of some of these parameters, specifically the cell size and number of cells. In CDMA systems is quite common to suppose only one carrier frequency for capacity estimation, and it is intuitive to think that for more base stations, mean more users. However the multiple access interference problem in CDMA systems could establish a limit for that supposition in a similar way that occurs in FDMA and TDMA systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The occurrence frequency of failure events serve as critical indexes representing the safety status of dam-reservoir systems. Although overtopping is the most common failure mode with significant consequences, this type of event, in most cases, has a small probability. Estimation of such rare event risks for dam-reservoir systems with crude Monte Carlo (CMC) simulation techniques requires a prohibitively large number of trials, where significant computational resources are required to reach the satisfied estimation results. Otherwise, estimation of the disturbances would not be accurate enough. In order to reduce the computation expenses and improve the risk estimation efficiency, an importance sampling (IS) based simulation approach is proposed in this dissertation to address the overtopping risks of dam-reservoir systems. Deliverables of this study mainly include the following five aspects: 1) the reservoir inflow hydrograph model; 2) the dam-reservoir system operation model; 3) the CMC simulation framework; 4) the IS-based Monte Carlo (ISMC) simulation framework; and 5) the overtopping risk estimation comparison of both CMC and ISMC simulation. In a broader sense, this study meets the following three expectations: 1) to address the natural stochastic characteristics of the dam-reservoir system, such as the reservoir inflow rate; 2) to build up the fundamental CMC and ISMC simulation frameworks of the dam-reservoir system in order to estimate the overtopping risks; and 3) to compare the simulation results and the computational performance in order to demonstrate the ISMC simulation advantages. The estimation results of overtopping probability could be used to guide the future dam safety investigations and studies, and to supplement the conventional analyses in decision making on the dam-reservoir system improvements. At the same time, the proposed methodology of ISMC simulation is reasonably robust and proved to improve the overtopping risk estimation. The more accurate estimation, the smaller variance, and the reduced CPU time, expand the application of Monte Carlo (MC) technique on evaluating rare event risks for infrastructures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Virtual-Build-to-Order (VBTO) is an emerging order fulfilment system within the automotive sector that is intended to improve fulfilment performance by taking advantage of integrated information systems. The primary innovation in VBTO systems is the ability to make available all unsold products that are in the production pipeline to all customers. In a conventional system the pipeline is inaccessible and a customer can be fulfilled by a product from stock or having a product Built-to-Order (BTO), whereas in a VBTO system a customer can be fulfilled by a product from stock, by being allocated a product in the pipeline, or by a build-to-order product. Simulation is used to investigate and profile the fundamental behaviour of the basic VBTO system and to compare it to a Conventional system. A predictive relationship is identified, between the proportions of customers fulfilled through each mechanism and the ratio of product variety / pipeline length. The simulations reveal that a VBTO system exhibits inherent behaviour that alters the stock mix and levels, leading to stock levels being higher than in an equivalent conventional system at certain variety / pipeline ratios. The results have implications for the design and management of order fulfilment systems in sectors such as automotive where VBTO is a viable operational model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study is about the comparison of simulation techniques between Discrete Event Simulation (DES) and Agent Based Simulation (ABS). DES is one of the best-known types of simulation techniques in Operational Research. Recently, there has been an emergence of another technique, namely ABS. One of the qualities of ABS is that it helps to gain a better understanding of complex systems that involve the interaction of people with their environment as it allows to model concepts like autonomy and pro-activeness which are important attributes to consider. Although there is a lot of literature relating to DES and ABS, we have found none that focuses on exploring the capability of both in tackling the human behaviour issues which relates to queuing time and customer satisfaction in the retail sector. Therefore, the objective of this study is to identify empirically the differences between these simulation techniques by stimulating the potential economic benefits of introducing new policies in a department store. To apply the new strategy, the behaviour of consumers in a retail store will be modelled using the DES and ABS approach and the results will be compared. We aim to understand which simulation technique is better suited to human behaviour modelling by investigating the capability of both techniques in predicting the best solution for an organisation in using management practices. Our main concern is to maximise customer satisfaction, for example by minimising their waiting times for the different services provided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports on an attempt to apply Genetic Algorithms to the problem of optimising a complex system, through discrete event simulation (Simulation Optimisation), with a view to reducing the noise associated with such a procedure. We are applying this proposed solution approach to our application test bed, a Crossdocking distribution centre, because it provides a good representative of the random and unpredictable behaviour of complex systems i.e. automated machine random failure and the variability of manual order picker skill. It is known that there is noise in the output of discrete event simulation modelling. However, our interest focuses on the effect of noise on the evaluation of the fitness of candidate solutions within the search space, and the development of techniques to handle this noise. The unique quality of our proposed solution approach is we intend to embed a noise reduction technique in our Genetic Algorithm based optimisation procedure, in order for it to be robust enough to handle noise, efficiently estimate suitable fitness function, and produce good quality solutions with minimal computational effort.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intelligent agents offer a new and exciting way of understanding the world of work. Agent-Based Simulation (ABS), one way of using intelligent agents, carries great potential for progressing our understanding of management practices and how they link to retail performance. We have developed simulation models based on research by a multi-disciplinary team of economists, work psychologists and computer scientists. We will discuss our experiences of implementing these concepts working with a well-known retail department store. There is no doubt that management practices are linked to the performance of an organisation (Reynolds et al., 2005; Wall & Wood, 2005). Best practices have been developed, but when it comes down to the actual application of these guidelines considerable ambiguity remains regarding their effectiveness within particular contexts (Siebers et al., forthcoming a). Most Operational Research (OR) methods can only be used as analysis tools once management practices have been implemented. Often they are not very useful for giving answers to speculative ‘what-if’ questions, particularly when one is interested in the development of the system over time rather than just the state of the system at a certain point in time. Simulation can be used to analyse the operation of dynamic and stochastic systems. ABS is particularly useful when complex interactions between system entities exist, such as autonomous decision making or negotiation. In an ABS model the researcher explicitly describes the decision process of simulated actors at the micro level. Structures emerge at the macro level as a result of the actions of the agents and their interactions with other agents and the environment. We will show how ABS experiments can deal with testing and optimising management practices such as training, empowerment or teamwork. Hence, questions such as “will staff setting their own break times improve performance?” can be investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When designing systems that are complex, dynamic and stochastic in nature, simulation is generally recognised as one of the best design support technologies, and a valuable aid in the strategic and tactical decision making process. A simulation model consists of a set of rules that define how a system changes over time, given its current state. Unlike analytical models, a simulation model is not solved but is run and the changes of system states can be observed at any point in time. This provides an insight into system dynamics rather than just predicting the output of a system based on specific inputs. Simulation is not a decision making tool but a decision support tool, allowing better informed decisions to be made. Due to the complexity of the real world, a simulation model can only be an approximation of the target system. The essence of the art of simulation modelling is abstraction and simplification. Only those characteristics that are important for the study and analysis of the target system should be included in the simulation model. The purpose of simulation is either to better understand the operation of a target system, or to make predictions about a target system’s performance. It can be viewed as an artificial white-room which allows one to gain insight but also to test new theories and practices without disrupting the daily routine of the focal organisation. What you can expect to gain from a simulation study is very well summarised by FIRMA (2000). His idea is that if the theory that has been framed about the target system holds, and if this theory has been adequately translated into a computer model this would allow you to answer some of the following questions: · Which kind of behaviour can be expected under arbitrarily given parameter combinations and initial conditions? · Which kind of behaviour will a given target system display in the future? · Which state will the target system reach in the future? The required accuracy of the simulation model very much depends on the type of question one is trying to answer. In order to be able to respond to the first question the simulation model needs to be an explanatory model. This requires less data accuracy. In comparison, the simulation model required to answer the latter two questions has to be predictive in nature and therefore needs highly accurate input data to achieve credible outputs. These predictions involve showing trends, rather than giving precise and absolute predictions of the target system performance. The numerical results of a simulation experiment on their own are most often not very useful and need to be rigorously analysed with statistical methods. These results then need to be considered in the context of the real system and interpreted in a qualitative way to make meaningful recommendations or compile best practice guidelines. One needs a good working knowledge about the behaviour of the real system to be able to fully exploit the understanding gained from simulation experiments. The goal of this chapter is to brace the newcomer to the topic of what we think is a valuable asset to the toolset of analysts and decision makers. We will give you a summary of information we have gathered from the literature and of the experiences that we have made first hand during the last five years, whilst obtaining a better understanding of this exciting technology. We hope that this will help you to avoid some pitfalls that we have unwittingly encountered. Section 2 is an introduction to the different types of simulation used in Operational Research and Management Science with a clear focus on agent-based simulation. In Section 3 we outline the theoretical background of multi-agent systems and their elements to prepare you for Section 4 where we discuss how to develop a multi-agent simulation model. Section 5 outlines a simple example of a multi-agent system. Section 6 provides a collection of resources for further studies and finally in Section 7 we will conclude the chapter with a short summary.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, we present a quantitative approach using probabilistic verification techniques for the analysis of reliability, availability, maintainability, and safety (RAMS) properties of satellite systems. The subject of our research is satellites used in mission critical industrial applications. A strong case for using probabilistic model checking to support RAMS analysis of satellite systems is made by our verification results. This study is intended to build a foundation to help reliability engineers with a basic background in model checking to apply probabilistic model checking to small satellite systems. We make two major contributions. One of these is the approach of RAMS analysis to satellite systems. In the past, RAMS analysis has been extensively applied to the field of electrical and electronics engineering. It allows system designers and reliability engineers to predict the likelihood of failures from the indication of historical or current operational data. There is a high potential for the application of RAMS analysis in the field of space science and engineering. However, there is a lack of standardisation and suitable procedures for the correct study of RAMS characteristics for satellite systems. This thesis considers the promising application of RAMS analysis to the case of satellite design, use, and maintenance, focusing on its system segments. Data collection and verification procedures are discussed, and a number of considerations are also presented on how to predict the probability of failure. Our second contribution is leveraging the power of probabilistic model checking to analyse satellite systems. We present techniques for analysing satellite systems that differ from the more common quantitative approaches based on traditional simulation and testing. These techniques have not been applied in this context before. We present the use of probabilistic techniques via a suite of detailed examples, together with their analysis. Our presentation is done in an incremental manner: in terms of complexity of application domains and system models, and a detailed PRISM model of each scenario. We also provide results from practical work together with a discussion about future improvements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Automotive producers are aiming to make their order fulfilment processes more flexible. Opening the pipeline of planned products for dynamic allocation to dealers/ customers is a significant step to be more flexible but the behaviour of such Virtual-Build-To-Order systems are complex to predict and their performance varies significantly as product variety levels change. This study investigates the potential for intelligent control of the pipeline feed, taking into account the current status of inventory (level and mix) and of the volume and mix of unsold products in the planning pipeline, as well as the demand profile. Five ‘intelligent’ methods for selecting the next product to be planned into the production pipeline are analysed using a discrete event simulation model and compared to the unintelligent random feed. The methods are tested under two conditions, firstly when customers must be fulfilled with the exact product they request, and secondly when customers trade-off a shorter waiting time for compromise in specification. The two forms of customer behaviour have a substantial impact on the performance of the methods and there are also significant differences between the methods themselves. When the producer has an accurate model of customer demand, methods that attempt to harmonise the mix in the system to the demand distribution are superior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Part 4: Transition Towards Product-Service Systems