973 resultados para Mg 2FeH 6 synthesis
Resumo:
Well-aligned Zn1-xMgxO nanorods and film with Mg-content x from 0 to 0.051 have been successfully synthesized by metal organic chemical vapor deposition (MOCVD) without any catalysts. The characterization results showed that the diameters and lengths of the nanorods were in the range of 20-80 nm and 330-360 nm, which possessed wurtzite structure with a c-axis growth direction. As the increase of Mg precursor flows into the growth chamber, the morphology of Zn1-xMgxO evolves from nanorods to a film with scale-like surface and the height of the nanorods and the film was almost identical, it is suggested that the growth rate along the c-axis was hardly changed while the growth of six equivalent facets of the type {1 0 (1) over bar 0} of the Zn1-xMgxO has been improved. Photoluminescence and Raman spectra show that the products have a good crystal quality with few oxygen vacancies. With the Mg incorporation, multiple-phonon scattering become weak and broad, and the intensities of all observed vibrational modes decrease. And the ultraviolet near-band-edge emission shows a clear blueshift (x=0.051, as much as 90 meV) and slightly broadening compared with that of pure ZnO nanorods. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Quasi-aligned Eu2+-doped wurtzite ZnS nanowires on Au-coated Si wafers have been successfully synthesized by a vapor deposition method under a weakly reducing atmosphere. Compared with the undoped counterpart, incorporation of the dopant gives a modulated composition and crystal structure, which leads to a preferred growth of the nanowires along the [0110] direction and a high density of defects in the nanowire hosts. The ion doping causes intense fluorescence and persistent phosphorescence in ZnS nanowires. The dopant Eu2+ ions form an isoelectronic acceptor level and yield a high density of bound excitions, which contribute to the appearance of the radiative recombination emission of the bound excitons and resonant Raman scattering at higher pumping intensity. Co-dopant Cl- ions can serve not only as donors, producing a donor-acceptor pair transition with the Eu2+ acceptor level, but can also form trap levels together with other defects, capture the photoionization electrons of Eu2+, and yield long-lasting (about 4 min), green phosphorescence. With decreasing synthesis time, the existence of more surface states in the nanowires forms a higher density of trap centers and changes the crystal-field strength around Eu2+. As a result, not only have an enhanced Eu2+ -4f(6)5d(1)-4f(7) intra-ion transition and a prolonged afterglow time been more effectively observed (by decreasing the nanowires' diameters), but also the Eu2+ related emissions are shifted to shorter wavelengths.
Resumo:
Titanium and zirconia are bioinert materials lacking bioactivity. In this work, surface modification of the two typical biomaterials is conducted by Mg-ion-implantation using a MEVVA ion source in an attempt to increase their bioactivity. Mg ions were implanted into zirconia and titanium with fluences ranging from 1 x 10(17) to 3 x 10(17) ions/cm(2) at 40 keV. The Mg-implanted samples, as well as control (unimplanted) samples, were immersed in SBF for 7 days and then removed to identify the presence of calcium and phosphate (Ca-P) coatings and to characterize their morphology and structure by SEM, XRD, and FT-IR. SEM observations confirm that globular aggregates are formed on the surfaces of the Mg-implanted zirconia and titanium while no precipitates are observed on the control samples. XRD and FT-IR analyses reveal that the deposits are carbonated hydroxyapatite (HAp). Our experimental results demonstrate that Mg-implantation improves the bioactivity of zirconia and titanium. Further, it is found that the degree of bioactivity is adjustable by the ion dose. Mechanisms are proposed to interpret the improvement of bioactivity as a result of Mg implantation and the difference in bioactivity between zirconia and titanium. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Eu3+-doped zinc aluminate (ZnAl2O4) nanorods with a spinel structure were successfully synthesized via an annealing transformation of layered precursors obtained by a homogeneous coprecipitation method combined with surfactant assembly. These spinel nanorods, which consist of much finer nanofibres together with large quantities of irregular mesopores and which possess a large surface area of 93.2 m(2) g(-1) and a relatively narrow pore size distribution in the range of 6 - 20 nm, are an ideal optical host for Eu3+ luminescent centres. In this nanostructure, rather disordered surroundings induce the typical electric-dipole emission (D-5(0) --> F-7(2)) of Eu3+ to predominate and broaden.
Resumo:
Zinc oxide flower-like bunches were directly synthesized on indium-doped tin oxide (ITO) glass substrates through a simple chemical bath deposition process. By adjusting precursor concentration, other morphologies ( spindles and rods) were also obtained. All of them are hexagonal and single crystalline in nature and grow along the [ 0001] crystallographic direction. The possible growth mechanisms for these nano- and microcrystals were proposed. It was revealed that both the inherent highly anisotropic structure of ZnO and the precursor concentration play crucial roles in determining final morphologies of the products. In addition, vibrational properties of ZnO crystals with different morphologies were investigated by Raman spectroscopy.
Resumo:
The mechanism of room-temperature optical transitions in a Mg-doped cubic GaN epilayer grown on GaAs(100) by metalorganic chemical vapor deposition has been investigated. By examining the dependence of photoluminescence on the excitation intensity (which varied over four orders) at room temperature, four different emissions with different origins were identified. A blue emission at similar to 3.037 eV was associated with a shallow Mg acceptor, while three different lower-energy emissions at similar to 2.895, similar to 2.716, and similar to 2.639 eV were associated with a deep Mg complex. In addition to a shallow acceptor at E congruent to 0.213 eV, three Mg-related deep defect levels were also found at around 215, 374, and 570 meV (from the conduction band). (C) 2000 American Institute of Physics. [S0021-8979(00)01904-6].
Resumo:
This review paper summarises briefly some important achievements of our recent research on the synthesis and novel applications of nanostructure ZnO such as honeycomb shaped 3-D (dimension) nano random-walls. A chemical reaction/vapour transportation deposition technique was employed to fabricate this structure on ZnO/SiO2/Si substrate without any catalyst and additive in a simple tube furnace to aim the low-cost and high qualified samples. Random laser action with strong coherent feedback at the wavelength between 375 nm and 395 nm has been firstly observed under 355 nm optical excitation with threshold pumping intensity of 0.38 MW/cm(2).
Resumo:
A bisfurylfulgide, E, E-3,4-bis[1-(2,5-dimethyl-3-furyl)ethylidene]-3,4-dihydrofuran-2,5-dione, is synthesized by Stobbe condensation reaction. The molecular structure of target compound is confirmed by single crystal X-ray crystallography analysis. It shows that the distances between two possible reaction sites of molecule are 0.3394 and 0.3406 nm respectively, which is favorable to photocyclization. The photochromic properties of this compound in different solvents are investigated, and the result shows that the compound exhibits excellent photochromic behavior. The primary result of applied research on parallel image storage is also presented.
Resumo:
本文以调控发光颜色、提高发光效率为目的,通过改变配体、中心金属离子、取代基等进行颜色调节;通过引入电子或空穴传输单元,实现发光分子的功能化进而改善载流子传输提高发光效率。文中主要以有机小分子和金属配合物为研究对象,它们本身都具有良好的发光性质。工作集中围绕以下几个问题展开:1、PPV齐聚物是一类高效发光的分子体系,如果在其中嵌入8一取代的哇琳单元对发光会有什么影响?2、使用含噁二唑(具有电子传输功能)的配体得到的金属配合物是否能同时拥有双重功能,即高效发光(金属配合物的特点)和优良的电子传输?3、由N2O-双齿配体转变成N,N-双齿配体,配合物的发光又会如何?4、稀土配合物具有高的光致发光效率,但电致发光效率非常低,能否通过咔哇或呛二吟功能化来改善载流子传输,提高电致发光效率?主要工作及取得的结果概述如下:1、经由Knoevenagel缩合反应合成了一系列共骊的2,21-(1,4-芳二乙烯基)双-8-取代喹啉。单晶X-射线衍射研究表明固态下存在分子间,π…π堆积相互作用,这对于载流子传输是比较有利的。喹啉8-位于的取代基的变化对发光影响不大,表明刚性共扼骨架对发光起主要贡献。改变中心的芳核,明显可以调控发光颜色。当存在分子内电荷转移时,与不存在的相比,发光显著红移。电致发光性质表明这些含双喳琳的PPV齐聚物是良好的发光和电子传输材料。2、存在分子内氢键的化合物2-(2-羟基苯基)-5-苯基-1,3,4-噁二唑(HOXD),具有激发态分子内质子转移(ESIPT)特性。在室温下,用365脚的紫外灯照射时表现强的兰色荧光。室温和低温(77K)下的磷光光谱表明它在固态下具有较强的磷光发射,与理论预测完全一致。多层电致发光器件ITO加PB/HOXD/BCP/Alq3/Mg:Ag最大亮度达到656cd/m2,电流效率为0.37cd/A。当把HoxD掺在cBP中时,亮度和效率都有一定程度的提高,达到870cd/m2和0.82cd/A。3、合成了含有德二哩配体(HOXD)的碱金属配合物MOxD(M=Li,Na,K)。我们发现配合物的发光颜色取决于中心金属离子,LiOXD是一个优良的蓝光材料,半峰宽是65nm,发射峰位在478nm,它也可以作为界面材料使用,起到和LIF相同的作用,即改善电子注入。同时作者首次报道了钠和钾的配合物可以用作发光材料。电致发光性质表明这些配合物是优良的蓝/绿色发光和电子注入/传输材料。4、使用从N双齿配体代替N,O-双齿配体(比如8-羟基喹啉),合成了含有2-(2-羟基喹啉)苯并咪唑的锌、铍和硼配合物。用硼配合物作为发光层的三层器件ITO/NPB/boron-complex/Alq3/LiF/A1所得到的光谱覆盖了从400到750nm的区域,表明获得了一个很好的白色发光。白光分别源于激子和激基复合物发光,由三种成分构成:来自于硼配合物的兰色发光(490nm);来自于Alq3的发光(535nln);NPB和BPh2(Pybm)界面形成的激基复合物发光(610nm)。器件最大亮度是110cd/m2最大效率是0.8cd/A。5、设计、合成了咔唑、噁二唑功能化的稀土馆配合物,期望通过改善空穴和电子传输来提高发光效率。含咔哇的配合物的双层器件发光光谱较宽,包括三价铺的特征发射和一个宽峰,可能是咔唑的发光。当使用TPD做空穴传输层时,噁二唑铺配合物的电致发光器件得到纯正明亮的红色发光,器件结构为ITO/TPD(40nm)/(OXD-PyBM)Eu(DBM)3(SOnm)/LiF(Inm)/Al(200m),启动电压为7.8V,在21v时达到最大亮度322cd/m2。亮度为57cd/m2和13.sv时电流效率最大,为1.9cd/A,对应外量子效率是1.7%。高的效率表明通过引入噁二唑基团,配合物的电子传输能力得到明显改善。6、初步研究了三线态发光的铱的金属有机配合物,得到了高亮度、高效率的绿色发光;对8-羟基喹啉锌配合物的高分子化也做了初步探讨。
Resumo:
基于二氢烷氧苄基嘧啶酮(DABO)类非核苷类逆转录酶抑制剂(NNRTIs)的构效关系研究,设计合成了2个新的6-(1H-吲哚-3-甲基)-5-乙基-3H-嘧啶-4-酮类化合物,并采用C8166细胞进行了体外抗HIV活性测试,为新型S-DABO类非核苷类逆转录酶抑制剂结构修饰提出了新的设想.
Resumo:
采用基于密度泛函理论(DFT)的第一性原理平面波赝势法(PWP)计算Mg,Si和Mn共掺GaN电子结构和光学性质,分析比较计算结果.计算表明:掺杂后体系均在能隙深处产生自旋极化杂质带,具有半金属性,能产生自旋注入.与Mn掺杂GaN比较,Mg共掺后能使居里温度(TC)升高,并在1.0eV出现源于Mn4+离子基态4T1(F)到4T2(F)态跃迁的较强的光吸收,而Mn掺杂GaN时位于1.3eV处的吸收峰消失;Si共掺后没能使TC升高,且在低能区无光吸收现象.