830 resultados para Metric Representation
Resumo:
In this paper, we investigate how a multilinear model can be used to represent human motion data. Based on technical modes (referring to degrees of freedom and number of frames) and natural modes that typically appear in the context of a motion capture session (referring to actor, style, and repetition), the motion data is encoded in form of a high-order tensor. This tensor is then reduced by using N-mode singular value decomposition. Our experiments show that the reduced model approximates the original motion better then previously introduced PCA-based approaches. Furthermore, we discuss how the tensor representation may be used as a valuable tool for the synthesis of new motions.
Resumo:
The African great lakes are of utmost importance for the local economy (fishing), as well as being essential to the survival of the local people. During the past decades, these lakes experienced fast changes in ecosystem structure and functioning, and their future evolution is a major concern. In this study, for the first time a set of one-dimensional lake models are evaluated for Lake Kivu (2.28°S; 28.98°E), East Africa. The unique limnology of this meromictic lake, with the importance of salinity and subsurface springs in a tropical high-altitude climate, presents a worthy challenge to the seven models involved in the Lake Model Intercomparison Project (LakeMIP). Meteorological observations from two automatic weather stations are used to drive the models, whereas a unique dataset, containing over 150 temperature profiles recorded since 2002, is used to assess the model’s performance. Simulations are performed over the freshwater layer only (60 m) and over the average lake depth (240 m), since salinity increases with depth below 60 m in Lake Kivu and some lake models do not account for the influence of salinity upon lake stratification. All models are able to reproduce the mixing seasonality in Lake Kivu, as well as the magnitude and seasonal cycle of the lake enthalpy change. Differences between the models can be ascribed to variations in the treatment of the radiative forcing and the computation of the turbulent heat fluxes. Fluctuations in wind velocity and solar radiation explain inter-annual variability of observed water column temperatures. The good agreement between the deep simulations and the observed meromictic stratification also shows that a subset of models is able to account for the salinity- and geothermal-induced effects upon deep-water stratification. Finally, based on the strengths and weaknesses discerned in this study, an informed choice of a one-dimensional lake model for a given research purpose becomes possible.
Resumo:
We quantify the extent to which a supercritical Sobolev mapping can increase the dimension of subsets of its domain, in the setting of metric measure spaces supporting a Poincaré inequality. We show that the set of mappings that distort the dimensions of sets by the maximum possible amount is a prevalent subset of the relevant function space. For foliations of a metric space X defined by a David–Semmes regular mapping Π : X → W, we quantitatively estimate, in terms of Hausdorff dimension in W, the size of the set of leaves of the foliation that are mapped onto sets of higher dimension. We discuss key examples of such foliations, including foliations of the Heisenberg group by left and right cosets of horizontal subgroups.
Resumo:
This paper presents problems arising from the lack of standardized methods for recording skeletal remains. Using practical examples it is shown how preservation and representation of bones can distort observations and how this can be reduced by systematic data acquisition.
Resumo:
Molybdenum isotopes are increasingly widely applied in Earth Sciences. They are primarily used to investigate the oxygenation of Earth's ocean and atmosphere. However, more and more fields of application are being developed, such as magmatic and hydrothermal processes, planetary sciences or the tracking of environmental pollution. Here, we present a proposal for a unifying presentation of Mo isotope ratios in the studies of mass-dependent isotope fractionation. We suggest that the δ98/95Mo of the NIST SRM 3134 be defined as +0.25‰. The rationale is that the vast majority of published data are presented relative to reference materials that are similar, but not identical, and that are all slightly lighter than NIST SRM 3134. Our proposed data presentation allows a direct first-order comparison of almost all old data with future work while referring to an international measurement standard. In particular, canonical δ98/95Mo values such as +2.3‰ for seawater and −0.7‰ for marine Fe–Mn precipitates can be kept for discussion. As recent publications show that the ocean molybdenum isotope signature is homogeneous, the IAPSO ocean water standard or any other open ocean water sample is suggested as a secondary measurement standard, with a defined δ98/95Mo value of +2.34 ± 0.10‰ (2s). Les isotopes du molybdène (Mo) sont de plus en plus largement utilisés dans les sciences de la Terre. Ils sont principalement utilisés pour étudier l'oxygénation de l'océan et de l'atmosphère de la Terre. Cependant, de plus en plus de domaines d'application sont en cours de développement, tels que ceux concernant les processus magmatiques et hydrothermaux, les sciences planétaires ou encore le suivi de la pollution environnementale. Ici, nous présentons une proposition de présentation unifiée des rapports isotopiques du Mo dans les études du fractionnement isotopique dépendant de la masse. Nous suggérons que le δ98/95Mo du NIST SRM 3134 soit définit comme étant égal à +0.25 ‰. La raison est que la grande majorité des données publiées sont présentés par rapport à des matériaux de référence qui sont similaires, mais pas identiques, et qui sont tous légèrement plus léger que le NIST SRM 3134. Notre proposition de présentation des données permet une comparaison directe au premier ordre de presque toutes les anciennes données avec les travaux futurs en se référant à un standard international. En particulier, les valeurs canoniques du δ98/95Mo comme celle de +2,3 ‰ pour l'eau de mer et de -0,7 ‰ pour les précipités de Fe-Mn marins peuvent être conservés pour la discussion. Comme les publications récentes montrent que la signature isotopique moyenne du molybdène de l'océan est homogène, le standard de l'eau océanique IAPSO ou tout autre échantillon d'eau provenant de l'océan ouvert sont proposé comme standards secondaires, avec une valeur définie du δ98/95 Mo de 2.34 ± 0.10 ‰ (2s).
Resumo:
A social Semantic Web empowers its users to have access to collective Web knowledge in a simple manner, and for that reason, controlling online privacy and reputation becomes increasingly important, and must be taken seriously. This chapter presents Fuzzy Cognitive Maps (FCM) as a vehicle for Web knowledge aggregation, representation, and reasoning. With this in mind, a conceptual framework for Web knowledge aggregation, representation, and reasoning is introduced along with a use case, in which the importance of investigative searching for online privacy and reputation is highlighted. Thereby it is demonstrated how a user can establish a positive online presence.
Resumo:
Synaesthesia has multifaceted consequences for both subjective experience and cognitive performance. Here, I broach the issue of how synaesthesia is represented in semantic memory. I hypothesize that, for example, in grapheme colour synaesthesia, colour is represented as an additional feature in the semantic network that enables the formation of associations that are not present in non-synaesthetes. Thus, synaesthesia provokes richer memory representations which enable learning opportunities that are not present in non-synaesthetes, provides additional memory cues, and may trigger creative ideas.
Resumo:
In this paper we present a solution to the problem of action and gesture recognition using sparse representations. The dictionary is modelled as a simple concatenation of features computed for each action or gesture class from the training data, and test data is classified by finding sparse representation of the test video features over this dictionary. Our method does not impose any explicit training procedure on the dictionary. We experiment our model with two kinds of features, by projecting (i) Gait Energy Images (GEIs) and (ii) Motion-descriptors, to a lower dimension using Random projection. Experiments have shown 100% recognition rate on standard datasets and are compared to the results obtained with widely used SVM classifier.
Resumo:
Olfactory glomeruli are the loci where the first odor-representation map emerges. The glomerular layer comprises exquisite local synaptic circuits for the processing of olfactory coding patterns immediately after their emergence. To understand how an odor map is transferred from afferent terminals to postsynaptic dendrites, it is essential to directly monitor the odor-evoked glomerular postsynaptic activity patterns. Here we report the use of a transgenic mouse expressing a Ca(2+)-sensitive green fluorescence protein (GCaMP2) under a Kv3.1 potassium-channel promoter. Immunostaining revealed that GCaMP2 was specifically expressed in mitral and tufted cells and a subpopulation of juxtaglomerular cells but not in olfactory nerve terminals. Both in vitro and in vivo imaging combined with glutamate receptor pharmacology confirmed that odor maps reported by GCaMP2 were of a postsynaptic origin. These mice thus provided an unprecedented opportunity to analyze the spatial activity pattern reflecting purely postsynaptic olfactory codes. The odor-evoked GCaMP2 signal had both focal and diffuse spatial components. The focalized hot spots corresponded to individually activated glomeruli. In GCaMP2-reported postsynaptic odor maps, different odorants activated distinct but overlapping sets of glomeruli. Increasing odor concentration increased both individual glomerular response amplitude and the total number of activated glomeruli. Furthermore, the GCaMP2 response displayed a fast time course that enabled us to analyze the temporal dynamics of odor maps over consecutive sniff cycles. In summary, with cell-specific targeting of a genetically encoded Ca(2+) indicator, we have successfully isolated and characterized an intermediate level of odor representation between olfactory nerve input and principal mitral/tufted cell output.
Resumo:
Nurses prepare knowledge representations, or summaries of patient clinical data, each shift. These knowledge representations serve multiple purposes, including support of working memory, workload organization and prioritization, critical thinking, and reflection. This summary is integral to internal knowledge representations, working memory, and decision-making. Study of this nurse knowledge representation resulted in development of a taxonomy of knowledge representations necessary to nursing practice.This paper describes the methods used to elicit the knowledge representations and structures necessary for the work of clinical nurses, described the development of a taxonomy of this knowledge representation, and discusses translation of this methodology to the cognitive artifacts of other disciplines. Understanding the development and purpose of practitioner's knowledge representations provides important direction to informaticists seeking to create information technology alternatives. The outcome of this paper is to suggest a process template for transition of cognitive artifacts to an information system.
Resumo:
How do probabilistic models represent their targets and how do they allow us to learn about them? The answer to this question depends on a number of details, in particular on the meaning of the probabilities involved. To classify the options, a minimalist conception of representation (Su\'arez 2004) is adopted: Modelers devise substitutes (``sources'') of their targets and investigate them to infer something about the target. Probabilistic models allow us to infer probabilities about the target from probabilities about the source. This leads to a framework in which we can systematically distinguish between different models of probabilistic modeling. I develop a fully Bayesian view of probabilistic modeling, but I argue that, as an alternative, Bayesian degrees of belief about the target may be derived from ontic probabilities about the source. Remarkably, some accounts of ontic probabilities can avoid problems if they are supposed to apply to sources only.