943 resultados para Metallic electrodes
Resumo:
Purpose: The aim of this study was to compare the accuracy of fit of three types of implant-supported frameworks cast in Ni-Cr alloy: specifically, a framework cast as one piece compared to frameworks cast separately in sections to the transverse or the diagonal axis, and later laser welded. Materials and Methods: Three sets of similar implant-supported frameworks were constructed. The first group of six 3-unit implant-supported frameworks were cast as one piece, the second group of six were sectioned in the transverse axis of the pontic region prior to casting, and the last group of six were sectioned in the diagonal axis of the pontic region prior to casting. The sectioned frameworks were positioned in the matrix (10 N(.)cm torque) and laser welded. To evaluate passive fit, readings were made with an optical microscope with both screws tightened and with only one-screw tightened. Data were submitted to ANOVA and Tukey-Kramer`s test (p < 0.05). Results: When both screws were tightened, no differences were found between the three groups (p > 0.05). In the single-screw-tightened test, with readings made opposite to the tightened side, the group cast as one piece (57.02 +/- 33.48 mu m) was significantly different (p < 0.05) from the group sectioned diagonally (18.92 +/- 4.75 mu m) but no different (p > 0.05) from the group transversally sectioned (31.42 +/- 20.68 mu m). On the tightened side, no significant differences were found between the groups (p > 0.05). Conclusions: Results of this study showed that casting diagonally sectioned frameworks lowers misfit levels of prosthetic implant-supported frameworks and also improves the levels of passivity to the same frameworks when compared to structures cast as one piece.
Resumo:
Objective: Using checkerboard DNA-DNA hybridisation (CDDH) assay, this randomised clinical study evaluated the contamination of metallic brackets by four cariogenic bacterial strains (Streptococcus mutans, Streptococcus sobrinus, Lactobacillus casei and Lactobacillus acidophilus) and the efficacy of 0.12% chlorhexidine gluconate (CHX) mouthwashes in reducing bacterial contamination. Methods: Thirty-nine 11-33-year-old patients under treatment with fixed orthodontic appliances were enrolled in the study and had 2 new metallic brackets bonded to premolars. Nineteen patients used a 0.12% CHX mouthwash (Periogard (R)) and 20 patients used a placebo mouthwash (control) twice a week. After 30 days, the brackets were removed and samples were obtained for analysis by CDDH. Data were analysed statistically by the Kruskal-Wallis test (alpha = 0.05) using the SAS software. Results: S. mutans, S. sobrinus, L. casei and L. acidophilus were detected in 100% of the samples from both groups. However, brackets of the control group were more heavily contaminated by S. mutans and S. sobrinus (P < 0.01). In the experimental group, although all counts decreased after rinsing with the chlorhexidine solution, there was significant difference only for S. mutans (P = 0.03). Conclusions: The use of 0.12% chlorhexidine gluconate mouthwashes can be useful in clinical practice to reduce the levels of cariogenic microorganisms in patients under treatment with fixed orthodontic appliances. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Nanostrucured europium oxide and hydroxide films were obtained by pulsed Nd:YAG (532 nm) laser ablation of a europium metallic target, in the presence of a 1 mbar helium buffer atmosphere. Both the produced film and the ambient plasma were characterized. The plasma was monitored by an electrostatic probe, for plume expansion in vacuum or in the presence of the buffer atmosphere. The time evolution of the ion saturation current was obtained for several probe to substrate distances. The results show the splitting of the plume into two velocity groups, being the lower velocity profile associated with metal cluster formation within the plume. The films were obtained in the presence of helium atmosphere, for several target-to-substrate distances. They were analyzed by Rutherford backscattering spectrometry, x-ray diffraction, and atomic force microscopy, for as-deposited and 600 degrees C treated-in-air samples. The results show that the as-deposited samples are amorphous and have chemical composition compatible with europium hydroxide. The thermally treated samples show x-ray diffraction peaks of Eu(2)O(3), with chemical composition showing excess oxygen. Film nanostructuring was shown to be strongly correlated with cluster formation, as shown by velocity splitting in probe current versus time plots. (C) 2010 American Vacuum Society. [DOI: 10.1116/1.3457784]
Resumo:
The mechanisms of nucleation and growth and the solid-to-liquid transition of metallic nanoclusters embedded in sodium borate glass were recently studied in situ via small-angle X-ray scattering (SAXS) and wide-an-le X-ray scattering (WAXS). SAXS results indicate that, under isothermal annealing conditions, the formation and growth of Bi or Ag nanoclusters embedded in sodium borate glass occurs through two successive stages after a short incubation period. The first stage is characterized by the nucleation and growth of spherical metal clusters promoted by the diffusion of Bi or Ag atoms through the initially supersaturated glass phase. The second stage is named the coarsening stage and occurs when the (Bi- or Ag-) doping level of the vitreous matrix is close to the equilibrium value. The experimental results demonstrated that, at advanced stages of the growth process, the time dependence of the average radius and density number of the clusters is in agreement with the classical Lifshitz-Slyozov-Waoner (LSW) theory. However, the radius distribution function is better described by a lognormal function than by the function derived from the theoretical LSW model. From the results of SAXS measurements at different temperatures, the activation energies for the diffusion of Ag and Bi through sodium borate glass were determined. In addition, via combination of the results of simultaneous WAXS and SAXS measurements at different temperatures, the crystallographic structure and the dependence of melting temperature T(m) on crystal radius R of Bi nanocrystals were established. The experimental results indicate that T(m) is a linear and decreasing function of nanocrystal reciprocal radius 1/R, in agreement with the Couchman and Jesser theoretical model. Finally, a weak contraction in the lattice parameters of Bi nanocrystals with respect to bulk crystals was established.
Resumo:
Langmuir-Blodgett (LB) and layer-by-layer films (LbL) of a PPV (p-phenylenevinylene) derivative, an azo compound and tetrasulfonated phthalocyanines were successfully employed as transducers in an ""electronic tongue"" system for detecting trace levels of phenolic compounds in water. The choice of the materials was based on their distinct electrical natures, which enabled the array to establish a fingerprint of very similar liquids. Impedance spectroscopy measurements were taken in the frequency range from 10 Hz to 1 MHz, with the data analysed with principal component analysis (PCA). The sensing units were obtained from five-layer LB films of (poly[(2-methoxy-5-n-hexyloxy)-p-phenylenevinylene]), OC(1)OC(18)-PPV (poly(2-methoxy,5-(n-octadecyl)-p-phenylenevinylene)), DR (HEMA-co-DR13MA (poly-(hydroxyethylmethacrylate-co-[4`-[[2-(methacryloyloxy)-ethyl]ethylamino]-2-chloro-4-nitroazobenzene]))) and five-bilayer LbL films of tetrasulfonated metallic phthalocyanines deposited onto gold interdigitated electrodes. The sensors were immersed into phenol, 2-chloro-4-methoxyphenol, 2-chlorophenol and 3-chlorophenol (isomers) solutions at 1 x 10(-9) mol L(-1), with control experiments carried out in ultra pure water. Samples could be distinguished if the principal component analysis (PCA) plots were made with capacitance values taken at 10(3) Hz, which is promising for detection of trace amounts of phenolic pollutants in natural water.
Resumo:
Phytase (myo-inositol hexaphosphate phosphohydrolase) and phytic acid (myo-inositol hexaphosphate) play an important environmental role, in addition to being a health issue in food industry. Phytic acid is antinutritional due to its ability to chelate metal ions and may also react with proteins decreasing their bioavailability. In this work, we produced biosensors with phytase immobilized in Layer-by-Layer (LbL) films, which could detect phytic acid with a detection limit of 0.19 mmol L-1, which is sufficient to detect phytic acid in seeds of grains and vegetables. The biosensosrs consisted of LbL films containing up to eight bilayers of phytase alternated with poly(allylamine) hydrochloride (PAH) deposited onto an indium-tin oxide (ITO) substrate modified with Prussian Blue. Amperometric detection was conducted in an acetate buffer solution (at pH 5.5) at room temperature, with the biosensor response attributed to the formation of phosphate ions. In subsidiary experiments with the currents measured at 0.0 V (vs. SCE), we demonstrated the absence of effects from some interferents, pointing to a good selectivity of the biosensor. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Nanostructured films comprising a 3-n-propylpyridiniunn silsesquioxane polymer (designated as SiPy(+)Cl(-)) and copper (II) tetrasulfophthalocyanine (CuTsPc) were produced using the Layer-by-Layer technique (LbL). To our knowledge this is the first report on the use of silsesquioxane derivative polymers as building blocks for nanostructured thin films fabrication. Deposition of the multilayers were monitored by UV-Vis spectroscopy revealing the linear increment in the absorbance of the Q-band from CuTsPc at 617 nm with the number of SiPy(+)Cl(-)/CuTsPc or CuTsPc/SiPy(+)Cl(-) bilayers. FTIR analyses showed that specific interactions between SiPy+Cl- and CuTsPc occurred between SO(3)(-) groups of tetrasulfophthalocyanine and the pyridinium groups of the polycation. Morphological studies were carried out using the AFM technique, which showed that the roughness and thickness of the films increase with the number of bilayers. The films displayed electroactivity and were employed to detection of dopamine (DA) and ascorbic acid (AA) using cyclic voltammetry, at concentrations ranging from 1.96 x 10(-4) to 1.31 x 10(-3) molL(-1). The number and the sequence of bilayers deposition influenced the electrochemical response in presence of DA and AA. Using differential pulse technique, films comprising SiPy(+)/CuTsPc were able to distinguish between DA and ascorbic acid (AA), with a potential difference of approximately with 500 mV, in the concentration range of 9.0 x 10(-5) to 2.0 x 10(-4) molL(-1), in pH 3.0.
Resumo:
This paper explores a new source of graphite for working electrodes, which presents advantages such as low electrical resistance, good flexibility, favorable mechanical performance, versatility to design electrodes in almost any size and very low cost. The new electrodes were investigated in batch electrochemical cells as associated with flow injection analysis systems. Cyclic voltammetry, stripping voltammetry, and amperometry associated with flow injection analysis techniques were applied for the determination of ascorbic acid, zinc and paracetamol in pharmaceutical formulations, respectively. Well-established analytical methods were applied for comparison purposes. The results herein demonstrate the potential of graphite foils as working electrodes in different electroanalytical methods, offering the possibility of producing disposable sensors for routine applications.
Resumo:
The present work describes the synthesis of platinum nanoparticles followed by their electrophoretic deposition onto transparent fluorine-doped tin oxide electrodes. The nano-Pt-modified electrodes were characterized by voltammetric studies in acidic solutions showing a great electrocatalytic behavior towards H(+) reduction being very interesting for fuel cell applications. Morphological characterization was performed by atomic force microscopy on different modified electrodes showing a very rough surface which can be tuned by means of time of deposition. Also, nickel hydroxide thin films were galvanostatically grown onto these electrodes showing an interesting electrochemical behavior as sharper peaks, indicating a faster ionic exchange from the electrolyte to the film.
Resumo:
This paper describes the applications of anew carbon paste electrode containing fibers of coconut (Cocus nucifera L) fruit, which are very rich in peroxidase enzymes naturally immobilized on its structure. The new sensor was applied for the amperometric quantification of benzoyl peroxide in facial creams and dermatological shampoos. The amperometric measurements were performed in 0.1 mol L(-1) phosphate buffer (pH 5.2), at 0.0 V (versus Ag/AgCl). On these conditions, benzoyl peroxide was rapidly determined in the 5.0-55 mu mol L(-1), with a detection limit of 2.5 mu mol L(-1) (s/n = 3), response time of 4.1 s (90% of the steady state) and sensitivity limit of 0.33 A mol L(-1) cm(-2). The amperometric results are in good agreement with those obtained by spectrophotometric technique, used as a standard method. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The present paper describes the utilization of nickel hydroxide modified electrodes toward the catalytic oxidation of carbohydrates (glucose, fructose, lactose and sucrose) and their utilization as electrochemical sensor. The modified electrodes were employed as a detector in flow injection analysis for individual carbohydrate detection, and to an ionic column chromatography system for multi-analyte samples aiming a prior separation step. Kinetic studies were performed on a rotating disk electrode (RDE) in order to determine both the heterogeneous rate constant and number of electrons transferred for each carbohydrate. Many advantages were found for the proposed system including fast and easy handling of the electrode modification, low cost procedure, a wide range of linearity (0.5-50 ppm), low detection limits (ppb level) and high sensitivities. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We describe a simple and efficient strategy to fabricate enzymatic devices based on the deposition of glucose oxidase on aligned and highly oriented CoNiMo metallic nanowires. CoNiMo nanowires with an average diameter of 200 nm and length of 50 mu m were electrodeposited on Au-covered alumina substrates via electrodeposition, using alumina membranes as templates. Enzyme-modified electrodes were fabricated via enzyme immobilization using a cross-linker. To minimize nonspecific reactions in the presence of interfering agents, a permselective membrane composed of poly(vinylsulfonic acid) and polyamidoamine dendrimer was deposited via electrostatic interaction. The formation of hydrogen peroxide as a product of the enzymatic reaction was monitored at low overpotential, 0.0 V (vs Ag/AgCl). The detection limit was estimated at 22 mu M under an applied potential of 0.0 V. The apparent Michaelis-Menten constant determined from the Lineweaver-Burke plot was 2 mM.
Resumo:
Copper hexacyanoferrate nanoparticles of about 30 nm in size have been prepared by the sonochemical irradiation of a mixture of aqueous potassium ferricyanide and copper chloride solutions. The nanoparticles were immobilized onto fluorine doped tin oxide (FTO) electrodes by using the electrostatic deposition layer-by-layer technique (LbL), obtaining electroactive films with electrocatalytic properties towards H2O2 reduction, providing higher currents than those observed for electrodeposited bulk material, even in electrolytes containing NH4+, Na+ and K+. The nanoparticles assembly was used as mediator in a glucose biosensor by immobilizing glucose oxidase enzyme by both, cross-linking and LbL. techniques. Sensitivities obtained were dependent on the immobilization method ranging from 1.23 mu A mmol(-1) L cm(-2) for crosslinking to 0.47 mu A mmol(-1) L cm(-2) for LbL; these values being of the same order than those obtained with electrodes where the amount of enzyme used is much higher. Moreover, the linear concentration range where the biosensors can operate was 10 times higher for electrodes prepared with the LbL immobilization method than with the conventional crosslinking one. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this work, the surface-enhanced Raman scattering (SERS) spectra of pyridine (py) on thin films of Co and Ni electrodeposited on an Ag electrode activated by oxidation-reduction cycles (ORC) are presented. The SERS spectra from the thin films were compared to those of py on activated bare transition metal electrodes. It was verified that the SERS spectra of py on 3 monolayers (ML)-thick films of Ni and Co presented only bands assignable to the py adsorbed on transition metal surfaces. It was also observed that even for 50 ML-thick transition metal films, the py SERS intensity was ca. 40% of the intensity from the 3 ML-thick films. The relative intensities of the SERS bands depended on the thickness of the films, and for films thicker than 7 ML for Co and 9 ML for Ni they were very similar to those of the bare transition metal electrodes. The transition metal thin films over Ag activated electrodes presented SERS intensities 3 orders of magnitude higher than the ones from bare transition metal electrodes. These films are more suitable to study the adsorption of low Raman cross-section molecules than are ORC-activated transition metal electrodes.
Resumo:
Flow injection analysis (FIA) using a carbon film sensor for amperometric detection was explored for ambroxol analysis in pharmaceutical formulations. The specially designed flow cell designed in the lab generated sharp and reproducible current peaks, with a wide linear dynamic range from 5 x 10(-7) to 3.5 x 10(-4) mol L-1, in 0.1 mol L-1 sulfuric acid electrolyte, as well as high sensitivity, 0.110 A mol(-1) L cm(-2) at the optimized flow rate. A detection limit of 7.6 x 10(-8) mol L-1 and a sampling frequency of 50 determinations per hour were achieved, employing injected volumes of 100 mu L and a flow rate of 2.0 mL min(-1). The repeatability, expressed as R.S.D. for successive and alternated injections of 6.0 x 10(-6) and 6.0 x 10(-5) mol L-1 ambroxol solutions, was 3.0 and 1.5%, respectively, without any noticeable memory effect between injections. The proposed method was applied to the analysis of ambroxol in pharmaceutical samples and the results obtained were compared with UV spectrophotometric and acid-base titrimetric methods. Good agreement between the results utilizing the three methods and the labeled values was achieved, corroborating the good performance of the proposed electrochemical methodology for ambroxol analysis. (C) 2008 Elsevier B.V. All rights reserved.