911 resultados para Machine Vision and Image Processing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis a semi-automated cell analysis system is described through image processing. To achieve this, an image processing algorithm was studied in order to segment cells in a semi-automatic way. The main goal of this analysis is to increase the performance of cell image segmentation process, without affecting the results in a significant way. Even though, a totally manual system has the ability of producing the best results, it has the disadvantage of taking too long and being repetitive, when a large number of images need to be processed. An active contour algorithm was tested in a sequence of images taken by a microscope. This algorithm, more commonly known as snakes, allowed the user to define an initial region in which the cell was incorporated. Then, the algorithm would run several times, making the initial region contours to converge to the cell boundaries. With the final contour, it was possible to extract region properties and produce statistical data. This data allowed to say that this algorithm produces similar results to a purely manual system but at a faster rate. On the other hand, it is slower than a purely automatic way but it allows the user to adjust the contour, making it more versatile and tolerant to image variations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, authentication studies for paintings require a multidisciplinary approach, based on the contribution of visual features analysis but also on characterizations of materials and techniques. Moreover, it is important that the assessment of the authorship of a painting is supported by technical studies of a selected number of original artworks that cover the entire career of an artist. This dissertation is concerned about the work of modernist painter Amadeo de Souza-Cardoso. It is divided in three parts. In the first part, we propose a tool based on image processing that combines information obtained by brushstroke and materials analysis. The resulting tool provides qualitative and quantitative evaluation of the authorship of the paintings; the quantitative element is particularly relevant, as it could be crucial in solving authorship controversies, such as judicial disputes. The brushstroke analysis was performed by combining two algorithms for feature detection, namely Gabor filter and Scale Invariant Feature Transform. Thanks to this combination (and to the use of the Bag-of-Features model), the proposed method shows an accuracy higher than 90% in distinguishing between images of Amadeo’s paintings and images of artworks by other contemporary artists. For the molecular analysis, we implemented a semi-automatic system that uses hyperspectral imaging and elemental analysis. The system provides as output an image that depicts the mapping of the pigments present, together with the areas made using materials not coherent with Amadeo’s palette, if any. This visual output is a simple and effective way of assessing the results of the system. The tool proposed based on the combination of brushstroke and molecular information was tested in twelve paintings obtaining promising results. The second part of the thesis presents a systematic study of four selected paintings made by Amadeo in 1917. Although untitled, three of these paintings are commonly known as BRUT, Entrada and Coty; they are considered as his most successful and genuine works. The materials and techniques of these artworks have never been studied before. The paintings were studied with a multi-analytical approach using micro-Energy Dispersive X-ray Fluorescence spectroscopy, micro-Infrared and Raman Spectroscopy, micro-Spectrofluorimetry and Scanning Electron Microscopy. The characterization of Amadeo’s materials and techniques used on his last paintings, as well as the investigation of some of the conservation problems that affect these paintings, is essential to enrich the knowledge on this artist. Moreover, the study of the materials in the four paintings reveals commonalities between the paintings BRUT and Entrada. This observation is supported also by the analysis of the elements present in a photograph of a collage (conserved at the Art Library of the Calouste Gulbenkian Foundation), the only remaining evidence of a supposed maquete of these paintings. The final part of the thesis describes the application of the image processing tools developed in the first part of the thesis on a set of case studies; this experience demonstrates the potential of the tool to support painting analysis and authentication studies. The brushstroke analysis was used as additional analysis on the evaluation process of four paintings attributed to Amadeo, and the system based on hyperspectral analysis was applied on the painting dated 1917. The case studies therefore serve as a bridge between the first two parts of the dissertation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several studies have shown that people with disabilities benefit substantially from access to a means of independent mobility and assistive technology. Researchers are using technology originally developed for mobile robots to create easier to use wheelchairs. With this kind of technology people with disabilities can gain a degree of independence in performing daily life activities. In this work a computer vision system is presented, able to drive a wheelchair with a minimum number of finger commands. The user hand is detected and segmented with the use of a kinect camera, and fingertips are extracted from depth information, and used as wheelchair commands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vision-based hand gesture recognition is an area of active current research in computer vision and machine learning. Being a natural way of human interaction, it is an area where many researchers are working on, with the goal of making human computer interaction (HCI) easier and natural, without the need for any extra devices. So, the primary goal of gesture recognition research is to create systems, which can identify specific human gestures and use them, for example, to convey information. For that, vision-based hand gesture interfaces require fast and extremely robust hand detection, and gesture recognition in real time. Hand gestures are a powerful human communication modality with lots of potential applications and in this context we have sign language recognition, the communication method of deaf people. Sign lan- guages are not standard and universal and the grammars differ from country to coun- try. In this paper, a real-time system able to interpret the Portuguese Sign Language is presented and described. Experiments showed that the system was able to reliably recognize the vowels in real-time, with an accuracy of 99.4% with one dataset of fea- tures and an accuracy of 99.6% with a second dataset of features. Although the im- plemented solution was only trained to recognize the vowels, it is easily extended to recognize the rest of the alphabet, being a solid foundation for the development of any vision-based sign language recognition user interface system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hand gestures are a powerful way for human communication, with lots of potential applications in the area of human computer interaction. Vision-based hand gesture recognition techniques have many proven advantages compared with traditional devices, giving users a simpler and more natural way to communicate with electronic devices. This work proposes a generic system architecture based in computer vision and machine learning, able to be used with any interface for humancomputer interaction. The proposed solution is mainly composed of three modules: a pre-processing and hand segmentation module, a static gesture interface module and a dynamic gesture interface module. The experiments showed that the core of vision-based interaction systems can be the same for all applications and thus facilitate the implementation. In order to test the proposed solutions, three prototypes were implemented. For hand posture recognition, a SVM model was trained and used, able to achieve a final accuracy of 99.4%. For dynamic gestures, an HMM model was trained for each gesture that the system could recognize with a final average accuracy of 93.7%. The proposed solution as the advantage of being generic enough with the trained models able to work in real-time, allowing its application in a wide range of human-machine applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Propolis is a chemically complex biomass produced by honeybees (Apis mellifera) from plant resins added of salivary enzymes, beeswax, and pollen. The biological activities described for propolis were also identified for donor plants resin, but a big challenge for the standardization of the chemical composition and biological effects of propolis remains on a better understanding of the influence of seasonality on the chemical constituents of that raw material. Since propolis quality depends, among other variables, on the local flora which is strongly influenced by (a)biotic factors over the seasons, to unravel the harvest season effect on the propolis chemical profile is an issue of recognized importance. For that, fast, cheap, and robust analytical techniques seem to be the best choice for large scale quality control processes in the most demanding markets, e.g., human health applications. For that, UV-Visible (UV-Vis) scanning spectrophotometry of hydroalcoholic extracts (HE) of seventy-three propolis samples, collected over the seasons in 2014 (summer, spring, autumn, and winter) and 2015 (summer and autumn) in Southern Brazil was adopted. Further machine learning and chemometrics techniques were applied to the UV-Vis dataset aiming to gain insights as to the seasonality effect on the claimed chemical heterogeneity of propolis samples determined by changes in the flora of the geographic region under study. Descriptive and classification models were built following a chemometric approach, i.e. principal component analysis (PCA) and hierarchical clustering analysis (HCA) supported by scripts written in the R language. The UV-Vis profiles associated with chemometric analysis allowed identifying a typical pattern in propolis samples collected in the summer. Importantly, the discrimination based on PCA could be improved by using the dataset of the fingerprint region of phenolic compounds ( = 280-400m), suggesting that besides the biological activities of those secondary metabolites, they also play a relevant role for the discrimination and classification of that complex matrix through bioinformatics tools. Finally, a series of machine learning approaches, e.g., partial least square-discriminant analysis (PLS-DA), k-Nearest Neighbors (kNN), and Decision Trees showed to be complementary to PCA and HCA, allowing to obtain relevant information as to the sample discrimination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chemical composition of propolis is affected by environmental factors and harvest season, making it difficult to standardize its extracts for medicinal usage. By detecting a typical chemical profile associated with propolis from a specific production region or season, certain types of propolis may be used to obtain a specific pharmacological activity. In this study, propolis from three agroecological regions (plain, plateau, and highlands) from southern Brazil, collected over the four seasons of 2010, were investigated through a novel NMR-based metabolomics data analysis workflow. Chemometrics and machine learning algorithms (PLS-DA and RF), including methods to estimate variable importance in classification, were used in this study. The machine learning and feature selection methods permitted construction of models for propolis sample classification with high accuracy (>75%, reaching 90% in the best case), better discriminating samples regarding their collection seasons comparatively to the harvest regions. PLS-DA and RF allowed the identification of biomarkers for sample discrimination, expanding the set of discriminating features and adding relevant information for the identification of the class-determining metabolites. The NMR-based metabolomics analytical platform, coupled to bioinformatic tools, allowed characterization and classification of Brazilian propolis samples regarding the metabolite signature of important compounds, i.e., chemical fingerprint, harvest seasons, and production regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research aims to advance blinking detection in the context of work activity. Rather than patients having to attend a clinic, blinking videos can be acquired in a work environment, and further automatically analyzed. Therefore, this paper presents a methodology to perform the automatic detection of eye blink using consumer videos acquired with low-cost web cameras. This methodology includes the detection of the face and eyes of the recorded person, and then it analyzes the low-level features of the eye region to create a quantitative vector. Finally, this vector is classified into one of the two categories considered —open and closed eyes— by using machine learning algorithms. The effectiveness of the proposed methodology was demonstrated since it provides unbiased results with classification errors under 5%

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Programa Doutoral em Engenharia Eletrónica e de Computadores

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, there has been a growing interest in the field of metabolomics, materialized by a remarkable growth in experimental techniques, available data and related biological applications. Indeed, techniques as Nuclear Magnetic Resonance, Gas or Liquid Chromatography, Mass Spectrometry, Infrared and UV-visible spectroscopies have provided extensive datasets that can help in tasks as biological and biomedical discovery, biotechnology and drug development. However, as it happens with other omics data, the analysis of metabolomics datasets provides multiple challenges, both in terms of methodologies and in the development of appropriate computational tools. Indeed, from the available software tools, none addresses the multiplicity of existing techniques and data analysis tasks. In this work, we make available a novel R package, named specmine, which provides a set of methods for metabolomics data analysis, including data loading in different formats, pre-processing, metabolite identification, univariate and multivariate data analysis, machine learning, and feature selection. Importantly, the implemented methods provide adequate support for the analysis of data from diverse experimental techniques, integrating a large set of functions from several R packages in a powerful, yet simple to use environment. The package, already available in CRAN, is accompanied by a web site where users can deposit datasets, scripts and analysis reports to be shared with the community, promoting the efficient sharing of metabolomics data analysis pipelines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Color image processing, pattern recognition, machine vision, application

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El treball presentat suposa una visió general de l'"Endoscopia amb Càpsula de Vídeo Wireless" i la inspecció de sequències de contraccions intestinals amb les últimes tecnologies de visió per computador. Després de la observació preliminar dels fonaments mèdics requerits, la aplicació de visió per computador es presenta en aquestos termes. En essència, aquest treball proveïx una exhaustiva selecció, descripció i avaluació de cert conjunt de mètodes de processament d'imatges respecte a l'anàlisi de moviment, en el entorn de seqüències d'imatges preses amb una càpsula endoscòpica. Finalment, es presenta una aplicació de software per configurar i emprar de forma ràpida i fàcil un entorn experimental.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Images obtained from high-throughput mass spectrometry (MS) contain information that remains hidden when looking at a single spectrum at a time. Image processing of liquid chromatography-MS datasets can be extremely useful for quality control, experimental monitoring and knowledge extraction. The importance of imaging in differential analysis of proteomic experiments has already been established through two-dimensional gels and can now be foreseen with MS images. We present MSight, a new software designed to construct and manipulate MS images, as well as to facilitate their analysis and comparison.