954 resultados para MOLECULAR MAGNETIC-MATERIALS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies of the band gap properties of one-dimensional superlattices with alternate layers of air and left-handed materials are carried out within the framework of Maxwell's equations. By left-handed material, we mean a material with dispersive negative electric and magnetic responses. Modeling them by Drude-type responses or by fabricated ones, we characterize the n(ω) = 0 gap, i.e., the zeroth order gap, which has been predicted and detected. The band structure and analytic equations for the band edges have been obtained in the long wavelength limit in case of periodic, Fibonacci, and Thue-Morse superlattices. Our studies reveal the nature of the width of the zeroth order band gap, whose edge equations are defined by null averages of the response functions. Oblique incidence is also investigated, yielding remarkable results. © 2010 Springer Science+Business Media B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rambutan (Nephelium lappaceum) is an exotic fruit with great market potential in Brazil. However, there are few available informations about plants with potential for cultivation, because great morphologic variation is observed among plants and for consequence, little uniformity in the orchards and in the fruits. This research had for objective to evaluate the genetic diversity of a collection of rambutan plants obtained by seeds through morfo-chemical analyses of plants and fruits and by fAFLP molecular markers, to indication of promising materials to be used in new plantings of the culture in the São Paulo State. Was verified that both markers, morphologic and molecular, were efficient in the distinction of varieties, showing the presence of genetic variability among the plants of this study. Was also verified that the materials A51 and B03 presented a larger group of desirable characteristics for new cultivations of the fruitful.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have established a link between the global ac response and the local flux distribution of superconducting films by combining magnetic ac susceptibility, dc magnetization, and magneto-optical measurements. The investigated samples are three Nb films: a plain specimen, used as a reference sample, and other two films patterned with square arrays of antidots. At low temperatures and small ac amplitudes of the excitation field, the Meissner screening prevents penetration of flux into the sample. Above a certain ac drive threshold, flux avalanches are triggered during the first cycle of the ac excitation. The subsequent periodic removal, inversion, and rise of flux occurs essentially through the already-created dendrites, giving rise to an ac susceptibility signal weakly dependent on the applied field. The intradendrite flux oscillation is followed, at higher values of the excitation field, by a more drastic process consisting of creation of new dendrites and antidendrites. In this more invasive regime, the ac susceptibility shows a clear field dependence. At higher temperatures a smooth penetration occurs, and the flux profile is characteristic of a critical state. We have also shown that the regime dominated by vortex avalanches can be reliably identified by ac susceptibility measurements. © 2011 American Physical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This communication reports that FeWO 4 nanocrystals were successfully synthesized by the microwave-hydrothermal method at 443 K for 1 h. The structure and shape of these nanocrystals were characterized by X-ray diffraction, Rietveld refinement, and transmission electron microscopy. The experimental results and first principles calculations were combined to explain the electronic structure and magnetic properties. Experimental data were obtained by magnetization measurements for different applied magnetic fields. Theoretical calculations revealed that magnetic properties of FeWO 4 nanocrystals can be assigned to two magnetic orderings with parallel or antiparallel spins in adjacent chains. These factors are crucial to understanding of competition between ferro- and antiferromagnetic behavior. © 2012 Elsevier Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objectives of this work were to study the suitability and highlight the advantages of the use of cross-linked ureasil-polyether hybrid matrices as film-forming systems. The results revealed that ureasil-polyethers are excellent film-forming systems due to specific properties, such as their biocompatibility, their cosmetic attractiveness for being able to form thin and transparent films, their short drying time to form films and their excellent bioadhesion compared to the commercial products known as strong adhesives. Rheological measurements have demonstrated the ability of these hybrid matrices to form a film in only a few seconds and Water Vapor Transmitting Rate (WVTR) showed adequate semi-occlusive properties suggesting that these films could be used as skin and wound protectors. Both the high skin bioadhesion and non-cytotoxic character seems to be improved by the presence of multiple amine groups in the hybrid molecules. © 2012 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unzipping carbon nanotubes (CNTs) is considered one of the most promising approaches for the controlled and large-scale production of graphene nanoribbons (GNR). These structures are considered of great importance for the development of nanoelectronics because of its dimensions and intrinsic nonzero band gap value. Despite many years of investigations some details on the dynamics of the CNT fracture/unzipping processes remain unclear. In this work we have investigated some of these process through molecular dynamics simulations using reactive force fields (ReaxFF), as implemented in the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) code. We considered multi-walled CNTs of different dimensions and chiralities and under induced mechanical stretching. Our preliminary results show that the unzipping mechanisms are highly dependent on CNT chirality. Well-defined and distinct fracture patterns were observed for the different chiralities. Armchair CNTs favor the creation of GNRs with well-defined armchair edges, while zigzag and chiral ones produce GNRs with less defined and defective edges. © 2012 Materials Research Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The magnetic characteristics of Ga1-xMnxN nanocrystalline films (x = 0.08 and x = 0.18), grown by reactive sputtering onto amorphous silica substrates (a-SiO2), are shown. Further than the dominant paramagnetic-like behaviour, both field- and temperature-dependent magnetization curves presented some particular features indicating the presence of secondary magnetic phases. A simple and qualitative analysis based on the Brillouin function assisted the interpretation of these secondary magnetic contributions, which were tentatively attributed to antiferromagnetic and ferromagnetic phases. © 2012 Elsevier Masson SAS. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon nanoscrolls (graphene layers rolled up into papyrus-like tubular structures) are nanostructures with unique and interesting characteristics that could be exploited to build several new nanodevices. However, an efficient and controlled synthesis of these structures was not achieved yet, making its large scale production a challenge to materials scientists. Also, the formation process and detailed mechanisms that occur during its synthesis are not completely known. In this work, using fully atomistic molecular dynamics simulations, we discuss a possible route to nanoscrolls made from graphene layers deposited over silicon oxide substrates containing chambers/pits. The scrolling mechanism is triggered by carbon nanotubes deposited on the layers. The process is completely general and can be used to produce scrolls from other lamellar materials, like boron nitride, for instance. © 2013 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrogenated bulk Zn1-xCoxO samples were synthesized via standard solid-state reaction route with Co molar concentrations up to 15 at.%. Magnetic characterization demonstrates a room temperature ferromagnetic behavior associated to a paramagnetic Curie-Weiss component. Detailed microstructural analysis was carried out to exclude the presence of extrinsic sources of ferromagnetism. The magnetization increases linearly as a function of Co concentration. Hall measurements reveal an insulating character for the whole set of samples. In this context, the defect mediated magnetic coupling between the Co atoms under the scope of the bound magnetic polarons model is used to interpret the observed room temperature ferromagnetism. © 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using a genuinely tridimensional approach to the time-dependent Ginzburg-Landau theory, we have studied the local magnetic field profile of a mesoscopic superconductor in the so-called SQUID geometry, i.e., a square with a hole at the center connected to the outside vacuum through a very thin slit. Our investigation was carried out in both the Meissner and the mixed state. We have also studied the influence of the temperature on the space distribution of the local magnetic field. © 2013 IOP Publishing Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The coordination compounds [Ni(μ-mal)(apy)2(H 2O)]·2.8H2O (1), [Mn(μ-mal)(H2O) 2] (2), (apyH)2[Cu(μ-mal)2] (3) and (apyH)2[Co(mal)2(H2O)2] (4) (mal = malonate, apy = p-aminopyridine) have been synthesized and characterized by elemental analysis, vibrational spectroscopy, single crystal X-ray diffraction and magnetometry. With exception of 4, the malonate group acts as bridging ligand leading to the formation of one-dimensional polymeric chains. In compound 1 it was observed the coordination of the p-aminopyridine in the axial positions of the distorted octahedral coordination sphere. The solid-state structure exhibits a high complex 3D network formed by several supramolecular interactions. Magnetic properties were determined for all members of the series and indicate that the materials behave are normal paramagnets, except the Mn polymer 2 which exhibits an antiferromagnetic ground state. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rare earth complexes (RE) can be incorporated in silica matrixes, originating organic/inorganic hybrid materials with good thermal stability and high rare earth emission lines. In this work, the hybrid material was obtained by the polymeric precursor method and ultrasonic dispersed with spherical silica particles prepared by the Stöber Method. The Raman spectra indicated that the Eu3+ ions are involved in a polymeric structure formed as consequence of the chelation and polyesterification reactions of this ion with citric acid and ethylene glycol. After the ultrasonic stirring, 2-hydroxynicotinic ligand will also compose this polymeric rigid structure. The TGA/DTA analysis showed that this polymeric material was thermal decomposed at 300 °C. Moreover, this process allows the chelating process of the 2-hydroxynicotinic acid ligand to the Eu3+ ions. The 29Si NMR showed that the ultrasonic dispersion of the reactants was not able to promote the functionalization of the silica particles with the 2-hydroxynicotinic acid ligand. Moreover, heat treatment promotes the [Eu(HnicO2)3] complex particles incorporation into silica pores. At this temperature, the TGA curve showed that only the thermal degradation of ethylene glycol and citric acid used during the experimental procedure occurs. The silica and hybrid materials are composed by spherical and aggregated particles with particle size of approximately 450 nm, which can be influenced by the heat treatment. These materials also present an absorption band located at 337 nm. The photoluminescent study showed that when the hybrid samples were excited at 337 nm wavelength, the ligand absorbs the excitation light. Part of this energy is transferred to the Eu3+ ion, which main emission, 5D0→ 7F2, is observed in the emission spectrum at 612 nm. As the heating temperature increases to 300 C, the energy transfer is more favorable. The lifetime values showed that the Eu3+ emission is enhanced due to the energy transfer process in the powders. © 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flexible magnetic membranes with high proportion of magnetite were successfully prepared by previous impregnation of the never dried bacterial cellulose pellicles with ferric chloride followed by reduction with sodium bisulfite and alkaline treatment for magnetite precipitation. Membranes were characterized by Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), vibrating magnetometer, field emission scanning electron microscopy (FEG-SEM) and impedance spectroscopy. Microwave properties of these membranes were investigated in the X-band (8.2 to 12.4 GHz). FEG-SEM micrographs show an effective coverage of the BC nanofibers by Fe 3O4 nanoparticles. Membranes with up to 75% in weight of particles have been prepared after 60 min of reaction. Magnetite nanoparticles in the form of aggregates well adhered to the BC fibers were observed by SEM. The average crystal sizes of the magnetic particles were in the range of 10 ± 1 to 13 ± 1 nm (estimated by XRD). The magnetic particles in the BC pellicles presented superparamagnetic behavior with a saturation magnetization in the range of 60 emu g- 1 and coercive force around 15 Oe. These magnetic pellicles also displayed high electrical permittivity and a potential application as microwave absorber materials. © 2013 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)