864 resultados para MHD instabilities
Resumo:
Context. Luminous blue variables (LBVs) are a class of highly unstable stars that have been proposed to play a critical role in massive stellar evolution as well as being the progenitors of some of the most luminous supernovae known. However the physical processes underlying their characteristic instabilities are currently unknown. Aims. In order to provide observational constraints on this behaviour we have initiated a pilot study of the population of (candidate) LBVs in the Local Group galaxy M 33. Methods. To accomplish this we have obtained new spectra of 18 examples within M 33. These provide a baseline of ≥ 4 yr with respect to previous observations, which is well suited to identifying LBV outbursts. We also employed existing multi-epoch optical and mid-IR surveys of M 33 to further constrain the variability of the sample and search for the presence of dusty ejecta. Results. Combining the datasets reveals that spectroscopic and photometric variability appears common, although in the majority of cases further observations will be needed to distinguish between an origin for this behavour in short lived stochastic wind structure and low level photospheric pulsations or coherent long term LBV excursions. Of the known LBVs we report a hitherto unidentified excursion of M 33 Var C between 2001-5, while the transition of the WNLh star B517 to a cooler B supergiant phase between 1993−2010 implies an LBV classification. Proof-of-concept quantitative model atmosphere analysis is provided for Romano’s star; the resultant stellar parameters being consistent with the finding that the LBV excursions of this star are accompanied by changes in bolometric luminosity. The combination of temperature and luminosity of two stars, the BHG [HS80] 110A and the cool hypergiant B324, appear to be in violation of the empirical Humphreys-Davidson limit. Mid-IR observations demonstrate that a number of candidates appear associated with hot circumstellar dust, although no objects as extreme as η Car are identified. The combined dataset suggests that the criteria employed to identify candidate LBVs results in a heterogeneous sample, also containing stars demonstrating the B[e] phenomenon. Of these, a subset of optically faint, low luminosity stars associated with hot dust are of particular interest since they appear similar to the likely progenitor of SN 2008S and the 2008 NGC 300 transient (albeit suffering less intrinsic extinction). Conclusions. The results of such a multiwavelength observational approach, employing multiplexing spectrographs and supplemented with quantitative model atmosphere analysis, appears to show considerable promise in both identifying and characterising the physical properties of LBVs as well as other short lived phases of massive stellar evolution.
Resumo:
Three sets of laboratory column experimental results concerning the hydrogeochemistry of seawater intrusion have been modelled using two codes: ACUAINTRUSION (Chemical Engineering Department, University of Alicante) and PHREEQC (U.S.G.S.). These reactive models utilise the hydrodynamic parameters determined using the ACUAINTRUSION TRANSPORT software and fit the chloride breakthrough curves perfectly. The ACUAINTRUSION code was improved, and the instabilities were studied relative to the discretisation. The relative square errors were obtained using different combinations of the spatial and temporal steps: the global error for the total experimental data and the partial error for each element. Good simulations for the three experiments were obtained using the ACUAINTRUSION software with slight variations in the selectivity coefficients for both sediments determined in batch experiments with fresh water. The cation exchange parameters included in ACUAINTRUSION are those reported by the Gapon convention with modified exponents for the Ca/Mg exchange. PHREEQC simulations performed using the Gains-Thomas convention were unsatisfactory, with the exchange coefficients from the database of PHREEQC (or range), but those determined with fresh water – natural sediment allowed only an approximation to be obtained. For the treated sediment, the adjusted exchange coefficients were determined to improve the simulation and are vastly different from those from the database of PHREEQC or batch experiment values; however, these values fall in an order similar to the others determined under dynamic conditions. Different cation concentrations were simulated using two different software packages; this disparity could be attributed to the defined selectivity coefficients that affect the gypsum equilibrium. Consequently, different calculated sulphate concentrations are obtained using each type of software; a smaller mismatch was predicted using ACUAINTRUSION. In general, the presented simulations by ACUAINTRUSION and PHREEQC produced similar results, making predictions consistent with the experimental data. However, the simulated results are not identical to the experimental data; sulphate (total S) is overpredicted by both models, most likely due to such factors as the kinetics of gypsum, the possible variations in the exchange coefficients due to salinity and the neglect of other processes.
Resumo:
The studied Flysch sequence of Alicante occupies a widely populated area crossed by main communication routes. The slopes existing on this area usually suffer slope instabilities that cause substantial damage and a very high maintenance cost. In order to assess the type of instability mechanisms affecting these heterogeneous carbonatic slopes, in this paper a wide inventory of 194 Flysch rock slopes has been performed, reporting the existing lithologies, their competence and their relative arrangement and the geometrical relationship between bedding and the slope and the associated instability mechanism. All these data have been jointly used for performing an instability mechanisms characterization. For systematically characterizing the wide type of complex rock exposures existing in the study area, they are divided into basic units referred as lithological pattern columns to which the different observed instability mechanisms are associated. Inventoried instability mechanisms are diverse and sometimes are combined with each other. Rockfalls are a very common instability mechanism associated to the differential weathering and sapping of the marly lithologies which are present in a wide number of geometrical combinations. The other instability mechanisms closely depend on the combination of the geometrical and lithological parameters. Therefore, this work provides a new basic tool which can be easily used during preliminary project stages for knowing the instability mechanisms which can affect rock slopes excavated on carbonatic Flysch heterogeneous geological formations.
Resumo:
The Ossa de Montiel (2015/02/23, Mw 4.7) earthquake struck the central part of Spain and was felt far from the epicenter (> 300 km). Even though ground shaking was slight (Imax = V, EMS-98 scale), the earthquake triggered many small rock falls, most at distances of 20–30 km from the epicenter, greater than previously recorded in S Spain (16 km) for earthquakes of similar magnitudes. The comparative analysis of available data for this event with records from other quakes of the Betic cordillera (S and SE Spain) seems to indicate a slower pattern of ground-motion attenuation in central Spain. This could explain why slope instabilities occurred at larger distances. Instability was more frequent, and occurred at larger distances, in road cuts than in natural slopes, implying that such slope types are highly susceptible to seismically induced landslides.
Resumo:
Various studies indicate that most of the slope instabilities affecting Flysch heterogeneous rock masses are related to differential weathering of the lithologies that make up the slope. Therefore, the weathering characteristics of the intact rock are of great importance for the study of these types of slopes and their associated instability processes. The main aim of this study is to characterise the weathering properties of the different lithologies outcropping in the carbonatic Flysch of Alicante (Spain), in order to understand the effects of environmental weathering on them, following slope excavation. To this end, 151 strata samples obtained from 11 different slopes, 5–40 years old, were studied. The lithologies were identified and their mechanical characteristics obtained using field and laboratory tests. Additionally, the slaking properties of intact rocks were determined, and a classification system proposed based on the first and fifth slake cycles (Id1 and Id5 respectively) and an Index of Weathering (IW5), defined in the study. Information obtained from the laboratory and the field was used to characterise the weathering behaviour of the rocks. Furthermore, the slaking properties determined from laboratory tests were related to the in-situ weathering properties of rocks (i.e., the weathering profile, patterns and length, and weathering rate). The proposed relationship between laboratory test results, field data, and in-situ observations provides a useful tool for predicting the response of slopes to weathering after excavation during the preliminary stages of design.
Resumo:
Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014
Resumo:
Since 2007, a series of acute crises have threatened the very existence of the euro area. The financial crisis which spilled into the currency union in 2007 was followed by an unexpectedly strong downturn of the real economy. As of 2010, the euro area was confronted with a severe sovereign debt and banking crisis. Despite these troublesome developments, the euro area has proven to have a considerable degree of resilience. In each phase, governance weaknesses were revealed – and national governments together with the EU institutions have designed an impressive series of policy responses in crisis management and institutional innovation. The euro area today is completed by a banking union with a Single Supervisory and a Single Resolution Mechanism. National budgetary and economic policies are more closely overseen and coordinated. With the European Stability Mechanism, the euro area now has a permanent tool in place to manage sovereign liquidity crises and instabilities in the banking sector. Most importantly, the euro area's only true federal institution, the European Central Bank (ECB), has become its most effective crisis manager: with the announcement of its Outright Monetary Transactions (OMT) programme, the ECB finally managed to calm the self fulfilling crisis in 2012. Meanwhile, the announcement of credit easing and quasi-quantitative easing in September 2014 is a move towards reducing financial fragmentation and countering deflation. The euro area in 2014 is hence a lot different from the one in 2007. And yet, further challenges need to be overcome. Prevailing stagnation, fragmentation and problems of legitimacy require a rethink of policies and further governance reform.
Resumo:
The state still matters. However, the members of the Euro-Atlantic community may be misinterpreting this crucial baseline prior launching their military interventions since 2001. The latest violence and collapse of the state of Iraq after the invasion of Northern Iraq by a radical Sunni Muslim terrorist group, so-called Islamic State of Iraq and Syria (ISIS), demonstrate once again the centrality and requirement of a functioning state in order to maintain violent forces to disrupt domestic and regional stability. Since 2001, the US and its European allies have waged wars against failed-states in order to increase this security and national interests, and then have been involved in some type of state-building.1 This has been the case in Afghanistan, Iraq, Libya, Mali, and Central African Republic (CAR). France went into Mali (2012) and CAR (2013), which preceded two European Union military and civilian Common Security and Defense Policy missions (CSDP), in order to avoid the collapse of these two states. The threat of the collapse of both states was a concern for the members of the Euro-Atlantic community as it could have spread to the region and causing even greater instabilities. In Mali, the country was under radical Islamic pressures coming from the North after the collapse of Libya ensuing the 2011 Western intervention, while in CAR it was mainly an ethno-religious crisis. Failed states are a real concern, as they can rapidly become training grounds for radical groups and permitting all types of smuggling and trafficking.2 In Mali, France wanted to protect its large French population and avoid the fall of Mali in the hands of radical Islamic groups directly or indirectly linked to Al-Qaeda. A fallen Mali could have destabilized the region of the Sahel and ultimately affected the stability of Southern European borders. France wanted to avoid the development of a safe haven across the Sahel where movements of people and goods are uncontrolled and illegal.3 Since the end of the Cold War, Western powers have been involved in stabilizing neighborhoods and regions, like the Balkans, Africa, and Middle East, which at the exceptions of the Balkans, have led to failed policies. 9/11 changes everything. The US, under President George W. Bush, started to wage war against terrorism and all states link to it. This started a period of continuous Western interventions in this post-9/11 era in Afghanistan, Iraq, Libya, Mali and CAR. If history has demonstrated one thing, the members of the Euro-Atlantic community are struggling and will continue to struggle to stabilize Afghanistan, Iraq, Libya, Mali and Central African Republic (CAR) for one simple reason: no clear endgame. Is it the creation of a state à la Westphalian in order to permit these states to operate as the sole guarantor of security? Or is the reestablishment of status quo in these countries permitting to exit and end Western operations? This article seeks to analyze Western interventions in these five countries in order to reflect on the concept of the state and the erroneous starting point for each intervention.4 In the first part, the political status of each country is analyzed in order to understand the internal and regional crisis. In a second time, the concept of the state, framed into the Buzanian trinity, is discussed and applied to the cases. In the last part the European and American civilian-military doctrines are examined in accordance with their latest military interventions and in their broader spectrum.
Resumo:
Ice-rafted debris (IRD) (>2 mm), input in eight sediment cores along the Eurasian continental margin (Arctic Ocean), have been studied over the last two glacial/interglacial cycles. Together with the revised chronologies and new micropaleontological data of two cores from the northern Barents Sea (PS2138) and northeastern Kara Sea (PS2741) spanning Marine Isotope Stages (MIS) 6 to 1, the IRD data give new insights into the glacial history of northern Eurasian ice-sheets over the last 150 ka. The chronologies of the cores are based on stable isotope records, AMS 14C datings, paleomagnetic and biostratigraphic data. Extensive episodes of northern Barents Sea ice-sheet growth, probably to the shelf edge, occurred during the late Weichselian (MIS 2) and the Saalian (MIS 6). Major IRD discharge at the MIS 4/3-transition hints to another severe glaciation, probably onto the outer shelf, during MIS 4. IRD-based instabilities of the marine-based ice margin along the northern Barents Sea between MIS 4 and 2 are similar in timing with North Atlantic Heinrich events and Nordic Seas IRD events, suggesting similar atmospheric cooling over a broad region or linkage of ice-sheet fluctuations through small sea-level events. In the relatively low-precipitation areas of eastern Eurasia, IRD peak values during Termination II and MIS 4/3-transition suggest a Kara Sea ice-sheet advance onto the outer shelf, probably to the shelf edge, during glacial MIS 6 and 4. This suggests that during the initial cooling following the interglacials MIS 5, and possibly MIS 7, the combined effect of sustained inflow of Atlantic water into the Arctic Ocean and penetration of moisture-bearing cyclones into easterly direction supported major ice build-up during Saalian (MIS 6) and Mid-Weichselian (MIS 4) glaciation. IRD peak values in MIS 5 indicate at least two advances of the Severnaya Semlya ice-sheet to the coast line during the Early Weichselian. In contrast, a distinct Kara Sea ice advance during the Late Weichselian (MIS 2) is not documented by the IRD records along the northeastern Kara Sea margin.
Resumo:
The dynamical properties of an extended Hubbard model, which is relevant to quarter-filled layered organic molecular crystals, are analyzed. We have computed the dynamical charge correlation function, spectral density, and optical conductivity using Lanczos diagonalization and large-N techniques. As the ratio of the nearest-neighbor Coulomb repulsion, V, to the hopping integral, t, increases there is a transition from a metallic phase to a charge-ordered phase. Dynamical properties close to the ordering transition are found to differ from the ones expected in a conventional metal. Large-N calculations display an enhancement of spectral weight at low frequencies as the system is driven closer to the charge-ordering transition in agreement with Lanczos calculations. As V is increased the charge correlation function displays a collective mode which, for wave vectors close to (pi,pi), increases in amplitude and softens as the charge-ordering transition is approached. We propose that inelastic x-ray scattering be used to detect this mode. Large-N calculations predict superconductivity with d(xy) symmetry close to the ordering transition. We find that this is consistent with Lanczos diagonalization calculations, on lattices of 20 sites, which find that the binding energy of two holes becomes negative close to the charge-ordering transition.
Resumo:
The influence of three dimensional effects on isochromatic birefringence is evaluated for planar flows by means of numerical simulation. Two fluid models are investigated in channel and abrupt contraction geometries. In practice, the flows are confined by viewing windows, which alter the stresses along the optical path. The observed optical properties differ therefore from their counterpart in an ideal two-dimensional flow. To investigate the influence of these effects, the stress optical rule and the differential propagation Mueller matrix are used. The material parameters are selected so that a retardation of multiple orders is achieved, as is typical for highly birefringent melts. Errors due to three dimensional effects are mainly found on the symmetry plane, and increase significantly with the flow rate. Increasing the geometric aspect ratio improve the accuracy provided that the error on the retardation is less than one order. (C) 2004 Elsevier B.V. All rights reserved.
Finite element analysis of fault bend influence on stick-slip instability along an intra-plate fault
Resumo:
Earthquakes have been recognized as resulting from stick-slip frictional instabilities along the faults between deformable rocks. A three-dimensional finite-element code for modeling the nonlinear frictional contact behaviors between deformable bodies with the node-to-point contact element strategy has been developed and applied here to investigate the fault geometry influence on the nucleation and development process of the stick-slip instability along an intra-plate fault through a typical fault bend model, which has a pre-cut fault that is artificially bent by an angle of 5.6degrees at the fault center. The numerical results demonstrate that the geometry of the fault significantly affects nucleation, termination and restart of the stick-slip instability along the intra-plate fault, and all these instability phenomena can be well simulated using the current finite-element algorithm.
Resumo:
The convective instability of pore-fluid flow in inclined and fluid-saturated three-dimensional fault zones has been theoretically investigated in this paper. Due to the consideration of the inclined three-dimensional fault zone with any values of the inclined angle, it is impossible to use the conventional linear stability analysis method for deriving the critical condition (i.e., the critical Rayleigh number) which can be used to investigate the convective instability of the pore-fluid flow in an inclined three-dimensional fault zone system. To overcome this mathematical difficulty, a combination of the variable separation method and the integration elimination method has been used to derive the characteristic equation, which depends on the Rayleigh number and the inclined angle of the inclined three-dimensional fault zone. Using this characteristic equation, the critical Rayleigh number of the system can be numerically found as a function of the inclined angle of the three-dimensional fault zone. For a vertically oriented three-dimensional fault zone system, the critical Rayleigh number of the system can be explicitly derived from the characteristic equation. Comparison of the resulting critical Rayleigh number of the system with that previously derived in a vertically oriented three-dimensional fault zone has demonstrated that the characteristic equation of the Rayleigh number is correct and useful for investigating the convective instability of pore-fluid flow in the inclined three-dimensional fault zone system. The related numerical results from this investigation have indicated that: (1) the convective pore-fluid flow may take place in the inclined three-dimensional fault zone; (2) if the height of the fault zone is used as the characteristic length of the system, a decrease in the inclined angle of the inclined fault zone stabilizes the three-dimensional fundamental convective flow in the inclined three-dimensional fault zone system; (3) if the thickness of the stratum is used as the characteristic length of the system, a decrease in the inclined angle of the inclined fault zone destabilizes the three-dimensional fundamental convective flow in the inclined three-dimensional fault zone system; and that (4) the shape of the inclined three-dimensional fault zone may affect the convective instability of pore-fluid flow in the system. (C) 2004 Published by Elsevier B.V.
Resumo:
The stable similarity reduction of a nonsymmetric square matrix to tridiagonal form has been a long-standing problem in numerical linear algebra. The biorthogonal Lanczos process is in principle a candidate method for this task, but in practice it is confined to sparse matrices and is restarted periodically because roundoff errors affect its three-term recurrence scheme and degrade the biorthogonality after a few steps. This adds to its vulnerability to serious breakdowns or near-breakdowns, the handling of which involves recovery strategies such as the look-ahead technique, which needs a careful implementation to produce a block-tridiagonal form with unpredictable block sizes. Other candidate methods, geared generally towards full matrices, rely on elementary similarity transformations that are prone to numerical instabilities. Such concomitant difficulties have hampered finding a satisfactory solution to the problem for either sparse or full matrices. This study focuses primarily on full matrices. After outlining earlier tridiagonalization algorithms from within a general framework, we present a new elimination technique combining orthogonal similarity transformations that are stable. We also discuss heuristics to circumvent breakdowns. Applications of this study include eigenvalue calculation and the approximation of matrix functions.
Resumo:
The effect of antiferromagnetic spin fluctuations on two-dimensional quarter-filled systems is studied theoretically. An effective t-J(')-V model on a square lattice which accounts for checkerboard charge fluctuations and next-nearest-neighbor antiferromagnetic spin fluctuations is considered. From calculations based on large-N theory on this model it is found that the exchange interaction J(') increases the attraction between electrons in the d(xy) channel only, so that both charge and spin fluctuations work cooperatively to produce d(xy) pairing.