999 resultados para METAL-PROMOTED CYCLIZATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, thin films of cobalt oxide (Co3O4) have been grown by the metal-organic chemical vapor deposition (MOCVD) technique on stainless steel substrate at two preferred temperatures (450 degrees C and 500 degrees C), using cobalt acetylacetonate dihydrate as precursor. Spherical as well as columnar microstructures of Co3O4 have been observed under controlled growth conditions. Further investigations reveal these films are phase-pure, well crystallized and carbon-free. High-resolution TEM analysis confirms that each columnar structure is a continuous stack of minute crystals. Comparative study between these Co3O4 films grown at 450 degrees C and 500 degrees C has been carried out for their application as negative electrodes in Li-ion batteries. Our method of electrode fabrication leads to a coating of active material directly on current collector without any use of external additives. A high specific capacity of 1168 micro Ah cm(-2) mu m(-1) has been measured reproducibly for the film deposited at 500 degrees C with columnar morphology. Further, high rate capability is observed when cycled at different current densities. The Co3O4 electrode with columnar structure has a specific capacity 38% higher than the electrode with spherical microstructure (grown at 450 degrees C). Impedance measurements on the Co3O4 electrode grown at 500 degrees C also carried out to study the kinetics of the electrode process. (C) 2014 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of metal hydride based solid sorption cooling systems depends on the driving pressure differential, and the rate of hydrogen transfer between coupled metal hydride beds during cooling and regeneration processes. Conventionally, the mid-plateau pressure difference obtained from `static' equilibrium PCT data are used for the thermodynamic analysis. It is well known that the processes are `dynamic' because the pressure and temperature, and hence the concentration of the hydride beds, are continuously changing. Keeping this in mind, the pair of La0.9Ce0.1Ni5 - LaNi4.7Al0.3 metal hydrides suitable for solid sorption cooling systems were characterised using both static and dynamic methods. It was found that the PCT characteristics, and the resulting enthalpy (Delta H) and entropy (Delta S) values, were significantly different for static and dynamic modes of measurements. In the present study, the solid sorption metal hydride cooling system is analysed taking in to account the actual variation in the pressure difference (Delta P) and the dynamic enthalpy values. Compared to `static' property based analysis, significant decrease in the driving potentials and transferrable amounts of hydrogen, leading to decrease in cooling capacity by 57.8% and coefficient of performance by 31.9% are observed when dynamic PCT data at the flow rate of 80 ml/min are considered. Copyright 2014 (C) Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphorene, a two-dimensional analog of black phosphorous, has been a subject of immense interest recently, due to its high carrier mobilities and a tunable bandgap. So far, tunability has been predicted to be obtained with very high compressive/tensile in-plane strains, and vertical electric field, which are difficult to achieve experimentally. Here, we show using density functional theory based calculations the possibility of tuning electronic properties by applying normal compressive strain in bilayer phosphorene. A complete and fully reversible semiconductor to metal transition has been observed at similar to 13.35% strain, which can be easily realized experimentally. Furthermore, a direct to indirect bandgap transition has also been observed at similar to 3% strain, which is a signature of unique band-gap modulation pattern in this material. The absence of negative frequencies in phonon spectra as a function of strain demonstrates the structural integrity of the sheets at relatively higher strain range. The carrier mobilities and effective masses also do not change significantly as a function of strain, keeping the transport properties nearly unchanged. This inherent ease of tunability of electronic properties without affecting the excellent transport properties of phosphorene sheets is expected to pave way for further fundamental research leading to phosphorene-based multi-physics devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem associated with metal nanoparticle (NP) agglomeration when trying to achieve a high loading amount has been solved by a new method of functionalization of MOFs' pores with terminal alkyne moieties. The alkynophilicity of the Au3+ ions has been utilized successfully for an exceptionally high loading (similar to 50 wt%) of Au-NPs on supported functionalized MOFs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A silver ion (Ag+)-triggered thixotropic metallo(organo)gel of p-pyridyl-appended oligo(p-phenylenevinylene) derivatives (OPVs) is reported for the first time. Solubilization of single-walled carbon nanohorns (SWCNHs) in solutions of the pure OPVs as well as in the metallogels mediated by pi-pi interactions has also been achieved. In situ fabrication of silver nanoparticles (AgNPs) in the SWCNH-doped dihybrid gel leads to the formation of a trihybrid metallogel. The mechanical strength of the metallogels could be increased step- wise in the order: freshly prepared gel

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we analyze and design ionic polymer metal composite (IPMC) underwater propulsors inspired from swimming of labriform fishes. The structural model of the IPMC fin accounts for the electromechanical dynamics of the bean in water. A quasi steady blade element model that accounts for unsteady phenomena, such as added mass effects, dynamic stall, and cumulativeWagner effect is used to estimate the hydrodynamic performance. Dynamic characteristics of IPMC actuated flapping fins having the same size as the actual fins of three different fish species, Gomphosus varius, Scarus frenatus, and Sthethojulis trilineata, are analyzed using numerical simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ionic polymer metal composites (IPMC) actuator for flapping insect scale wing is advantageous due to its low mass, high deflection and simple actuation mechanism. Some of the factors that affect the actuation of IPMC are the amount of hydration in the polymer membrane and the environmental conditions such as temperature, humidity etc. In structural design, the attachment of wing on the IPMC actuators is an important concern as the attached wing increases the mass of actuators thereby affecting the parameters like displacement, stiffness and resonant frequencies. Such IPMC actuators have to produce sufficient actuation force and frequency to lift and flap the attached wing. Therefore, it is relevant to study the influence of attachment of wing on the actuator parameters (displacement, resonant frequency, block force and stiffness) and performance of the actuators. This paper is divided into two parts; the first part deals with the modeling of the IPMC actuators for its effect on the level of water uptake and temperature using energy based method. The modeling method adapted is validated with the experimental procedure used to actuate the IPMC. The second part deals with the experimental analysis of IPMC actuation at dry, wet and in water conditions. The effect of end mass loading on the performance of 20 Hz, high frequency actuator (HFA) and 8.7 Hz, low frequency IPMC actuators (LFA) and sensors is studied. The IPMC actuators are attached with IPMC flapping wing at its free end and performance analysis on the attached wing is also carried out.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, we have synthesized Fe, Co and Ni doped BaTiO3 catalyst by a wet chemical synthesis method using oxalic acid as a chelating agent. The concentration of the metal dopant varies from 0 to 5 mol% in the catalysts. The physical and chemical properties of doped BaTiO3 catalysts were studied using various analytical methods such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), BET surface area and Transmission electron microscopy (TEM). The acidic strength of the catalysts was measured using a n-butylamine potentiometric titration method. The bulk BaTiO3 catalyst exhibits a tetragonal phase with the P4mm space group. A structural transition from tetrahedral to cubic phase was observed for Fe, Co and Ni doped BaTiO3 catalysts with an increase in doped metal concentration from 1 to 5 mol%. The particle sizes of the catalysts were calculated from TEM images and are in the range of 30-80 nm. All the catalysts were tested for the catalytic reduction of nitrobenzene to azoxybenzene. The BaTiO3 catalyst was found to be highly active and less selective compared to the doped catalysts which are active and highly selective towards azoxybenzene. The increase in selectivity towards azoxybenzene is due to an increase in acidic strength and reduction ability of the doped metal. It was also observed that the nature of the metal dopant and their content at the B-site has an impact on the catalytic reduction of nitrobenzene. The Co doped BaTiO3 catalyst showed better activity with only 0.5 mol% doping than Fe and Ni doped BaTiO3 catalysts with maximum nitrobenzene conversion of 91% with 78% selectivity to azoxybenzene. An optimum Fe loading of 2.5 mol% in BaTiO3 is required to achieve 100% conversion with 93% selectivity whereas Ni with 5 mol% showed a conversion of 93% and a azoxybenzene selectivity of 84%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In last 40 years, CeO2 has been found to play a major role in the area of auto exhaust catalysis due to its unique redox properties. Catalytic activity is enhanced when CeO2 is added to the noble metals supported Al2O3 catalysts. Reason for increase in catalytic activity is due to higher dispersion of noble metals in the form of ions in CeO2. This has led to the idea of substitution of noble metal ions in CeO2 lattice acting as adsorption sites instead of nanocrystalline noble metal particles on CeO2. In this article, a brief review of synthesis, structure and catalytic properties of noble metal ions dispersed on CeO2 resulting in noble metal ionic catalysts (NMIC) like Ce1-xMxO2-delta, Ce1-x-yTixMyO2-delta, Ce1-x-yZrxMyO2-delta, Ce1-x-ySnxMyO2-delta and Ce1-x-yFexMyO2-delta (M = Pt, Pd, Rh and Ru) are presented. Substitution of Ti, Zr, Sn and Fe in CeO2 increases oxygen storage capacities (OSC) due to structural distortion, whereas dispersion of noble metal ions in Ti, Zr, Sn and Fe substituted CeO2 supports increase both OSC and catalytic activities. Electronic interaction between noble metal ions and CeO2 in NMICs responsible for higher OSC and higher catalytic activities is discussed. (C) 2015 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel method for alpha-hydroxylation of ketones using substoichiometric amount of iodine under metalfree conditions is described. This method has been successfully employed in synthesizing a variety of heterocyclic compounds, which are useful precursors. alpha-Hydroxylation of diketones and triketones are illustrated. This strategy provides a novel, efficient, mild and inexpensive method for alpha-hydroxylation of aryl ketones using a sub-stoichiometric amount of molecular iodine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rechargeable lithium-ion battery remains the leading electrochemical energy-storage device, albeit demanding steady effort of design and development of superior cathode materials. Polyanionic framework compounds are widely explored in search for such cathode contenders. Here, lithium metal borate (LiMBO3) forms a unique class of insertion materials having the lowest weight polyanion (i. e., BO33-), thus offering the highest possible theoretical capacity (ca. 220 mAh/g). Since the first report in 2001, LiMBO3 has rather slow progress in comparison to other polyanionic cathode systems based on PO4, SO4, and SiO4. The current review gives a sneak peak to the progress on LiMBO3 cathode systems in the last 15 years highlighting their salient features and impediments in cathode implementation. The synthesis and structural aspects of borate family are described along with the critical analysis of the electrochemical performance of borate family of insertion materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the synthesis of high quality vanadium dioxide (VO2) thin films by a novel spray pyrolysis technique, namely ultrasonic nebulized spray pyrolysis of aqueous combustion mixture (UNSPACM). This simple and cost effective two step process involves synthesis of a V2O5 film on an LaAlO3 substrate followed by a controlled reduction to form single phase VO2. The formation of M1 phase (p21/c) is confirmed by Raman spectroscopic studies. A thermally activated metal-insulator transition (MIT) was observed at 61 degrees C, where the resistivity changes by four orders of magnitude. Activation energies for the low conduction phase and the high conduction phase were obtained from temperature variable resistance measurements. The infrared spectra also show a dramatic change in reflectance from 13% to over 90% in the wavelength range of 7-15 mu m. This indicates the suitability of the films for optical switching applications at infrared frequencies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We employed in situ pulsed laser deposition (PLD) and angle-resolved photoemission spectroscopy (ARPES) to investigate the mechanism of the metal-insulator transition (MIT) in NdNiO3 (NNO) thin films, grown on NdGaO3(110) and LaAlO3(100) substrates. In the metallic phase, we observe three-dimensional hole and electron Fermi surface (FS) pockets formed from strongly renormalized bands with well-defined quasiparticles. Upon cooling across the MIT in NNO/NGO sample, the quasiparticles lose coherence via a spectral weight transfer from near the Fermi level to localized states forming at higher binding energies. In the case of NNO/LAO, the bands are apparently shifted upward with an additional holelike pocket forming at the corner of the Brillouin zone. We find that the renormalization effects are strongly anisotropic and are stronger in NNO/NGO than NNO/LAO. Our study reveals that substrate-induced strain tunes the crystal field splitting, which changes the FS properties, nesting conditions, and spin-fluctuation strength, and thereby controls the MIT via the formation of an electronic order parameter with QAF similar to (1/4,1/4,1/4 +/- delta).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A facile methodology for synthesizing Au-Cu2S hybrid nanoparticles is presented. Au-Cu2S nanoparticles have application in visible light driven photocatalytic degradation of dyes. Detailed microstructural and compositional characterization illustrated that the hybrid nanoparticles are composed of cube shaped Au-Cu solid solution and hemispherical shaped Cu2S phases. Investigation of nanoparticles extracted at different stages of the synthesis process revealed that the mechanism of formation of hybrid nanoparticles involved initial formation of isolated cube shaped pure Au nanoparticles and Cu-thiolate complex. In the subsequent stages, the Au nanoparticles get adsorbed onto the Cu-thiolate complex which is followed by the decomposition of the Cu-thiolate complex to form Au-Cu2S hybrid nanoparticles. This study also illustrates that an optimum concentration of dodecanethiol is required both for achieving size and morphological uniformity of the participating phases and for their attachment to form a hybrid nanoparticle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CONSPECTUS: Curcumin is a polyphenolic species. As an active ingredient of turmeric, it is well-known for its traditional medicinal properties. The therapeutic values include antioxidant, anti-inflammatory, antiseptic, and anticancer activity with the last being primarily due to inhibition of the transcription factor NF-kappa B besides affecting several biological pathways to arrest tumor growth and its progression. Curcumin with all these positive qualities has only remained a potential candidate for cancer treatment over the years without seeing any proper usage because of its hydrolytic instability involving the diketo moiety in a cellular medium and its poor bioavailability. The situation has changed considerably in recent years with the observation that curcumin in monoanionic form could be stabilized on binding to a metal ion. The reports from our group and other groups have shown that curcumin in the metal-bound form retains its therapeutic potential. This has opened up new avenues to develop curcumin-based metal complexes as anticancer agents. Zinc(II) complexes of curcumin are shown to be stable in a cellular medium. They display moderate cytotoxicity against prostate cancer and neuroblastoma cell lines. A similar stabilization and cytotoxic effect is reported for (arene)ruthenium(II) complexes of curcumin against a variety of cell lines. The half-sandwich 1,3,5-triaza-7-phosphatricyclo-3.3.1.1]decane (RAPTA)-type ruthenium(II) complexes of curcumin are shown to be promising cytotoxic agents with low micromolar concentrations for a series of cancer cell lines. In a different approach, cobalt(III) complexes of curcumin are used for its cellular delivery in hypoxic tumor cells using intracellular agents that reduce the metal and release curcumin as a cytotoxin. Utilizing the photophysical and photochemical properties of the curcumin dye, we have designed and synthesized photoactive curcumin metal complexes that are used for cellular imaging by fluorescence microscopy and damaging the cancer cells on photoactivation in visible light while being minimally toxic in darkness. In this Account, we have made an attempt to review the current status of the chemistry of metal curcumin complexes and present results from our recent studies on curcumin complexes showing remarkable in vitro photocytotoxicity. The undesirable dark toxicity of the complexes can be reduced with suitable choice of the metal and the ancillary ligands in a ternary structure. The complexes can be directed to specific subcellular organelles. Selectivity by targeting cancer cells over normal cells can be achieved with suitable ligand design. We expect that this methodology is likely to provide an impetus toward developing curcumin-based photochemotherapeutics for anticancer treatment and cure.