854 resultados para Lubricating oils
Resumo:
The use of essential oils (EOs) in functional foods containing probiotic microorganisms must consider the antimicrobial activity of these oils against beneficial bacteria such as Lactobacillus rhamnosus. This study aimed to evaluate the sensitivity of L. rhamnosus cultures treated with cinnamon EO through viable cell counts and visualisation by transmission electron microscopy. Cinnamon EO at a concentration of 0.04% had a bacteriostatic activity after 2 h of incubation. Although slight alterations were detected in the cell structure, this concentration was considered to be bactericidal, since it led to a significant reduction in cell numbers after 24 h. on the other hand, cinnamon EO at a 1.00% concentration decreased cell counts by 3 log units after 2 h incubation and no viable cell count was detected after 24 h. Transmission electron microscopy indicated that cells treated with 1.00% cinnamon EO were severely damaged and presented cell membrane disruption and cytoplasmic leakage.
Resumo:
Plants have been used for thousands of years to flavor and conserve food, to treat health disorders and to prevent diseases including epidemics. The knowledge of their healing properties has been transmitted over the centuries within and among human communities. Active compounds produced during secondary vegetal metabolism are usually responsible for the biological properties of some plant species used throughout the globe for various purposes, including treatment of infectious diseases. Currently, data on the antimicrobial activity of numerous plants, so far considered empirical, have been scientifically confirmed, concomitantly with the increasing number of reports on pathogenic microorganisms resistant to antimicrobials. Products derived from plants may potentially control microbial growth in diverse situations and in the specific case of disease treatment, numerous studies have aimed to describe the chemical composition of these plant antimicrobials and the mechanisms involved in microbial growth inhibition, either separately or associated with conventional antimicrobials. Thus, in the present work, medicinal plants with emphasis on their antimicrobial properties are reviewed.
Resumo:
Estudos com plantas e utilização em terapias combinatórias têm sido estimulados. Verificou-se as possíveis interações entre óleos essenciais de plantas [canela (Cinnamomum zeylanicum Blume Lauraceae), capim-cidreira (Cymbopogon citratus (DC.) Stapf, Poaceae), hortelã-pimenta (Mentha piperita L. Lamiaceae), gengibre (Zingiber officinale Roscoe Zingiberaceae), cravo-da-índia (Caryophillus aromaticus L. Myrtaceae) e alecrim (Rosmarinus officinalis L. Lamiaceae)] combinados a oito drogas antimicrobianas frente a doze linhagens de Staphylococcus aureus e doze de Escherichia coli isoladas de humanos. Após determinação da Concentração Inibitória Mínima (CIM) para os óleos pelo método da diluição foram realizados ensaios para verificação de sinergismo entre os óleos essenciais e os antimicrobianos pela metodologia de Kirby & Bauer. S. aureus foi mais suscetível às interações óleos e drogas, tendo o óleo de capim cidreira apresentado sinergismo com as oito drogas testadas, seguido pelo óleo de hortelã com sete drogas. Nos ensaios com E. coli, houve sinergismo apenas para os óleos de alecrim (três drogas) e capim-cidreira (duas drogas). Não ocorreram casos de antagonismo e os resultados de sinergismo foram influenciados pelos microrganismos estudados.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper provides an overview regarding the main aspects of seed lipases, such as the reactions catalyzed, physiological functions, specificities, sources and applications. Lipases are ubiquitous in nature and are produced by several plants, animals and microorganisms. These enzymes exhibit several very interesting features, such as low cost and easy purification, which make their commercial exploitation as industrial enzymes a potentially attractive alternative. The applications of lipases in food, detergents, oils and fats, medicines and fine chemistry, effluent treatment, biodiesel production and in the cellulose pulp industry, as well as the main sources of oilseed and cereal seed lipases, are reviewed.
Resumo:
Pseudomonas strains are able to biosynthesize rhamnose-containing surfactants also known as rhamnolipids. These surface-active compounds are reviewed with respect to chemical structure, properties, biosynthesis, and physiological role, focusing on their production and the use of low-cost substrates such as wastes from food industries as alternative carbon sources. The use of inexpensive raw materials such as agroindustrial wastes is an attractive strategy to reduce the production costs associated with biosurfactant production and, at same time, contribute to the reduction of environmental impact generated by the discard of residues, and the treatment costs. Carbohydrate-rich substrates generated low rhamnolipid levels, whereas oils and lipid-rich wastes have shown excellent potential as alternative carbon sources.
Resumo:
Several microorganisms are known to produce a wide variety of surface-active substances, which are referred to as biosurfactants. Interesting examples for biosurfactants are rhamnolipids, glycolipids mainly known from Pseudomonas aeruginosa produced during cultivation on different substrates like vegetable oils, sugars, glycerol or hydrocarbons. However, besides costs for downstream processing of rhamnolipids, relatively high raw-material prices and low productivities currently inhibit potential economical production of rhamnolipids on an industrial scale. This review focuses on cost-effective and sustainable production of rhamnolipids by introducing new possibilities and strategies regarding renewable substrates. Additionally, past and recent production strategies using alternative substrates such as agro-industrial byproducts or wastes are summarized. Requirements and concepts for next-generation rhamnolipid producing strains are discussed and potential targets for strain-engineering are presented. The discussion of potential new strategies is supported by an analysis of the metabolism of different Pseudomonas species. According to calculations of theoretical substrate-to-product conversion yields and current world-market price analysis, different renewable substrates are compared and discussed from an economical point of view. A next-generation rhamnolipid producing strain, as proposed within this review, may be engineered towards reduced formation of byproducts, increased metabolic spectrum, broadened substrate spectrum and controlled regulation for the induction of rhamnolipid synthesis. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Petroleum is the main energy source utilized in the world, but its availability is limited and the search for new renewable energy sources is of major interest. Biofuels, such as ethanol and biodiesel, are among the most promising sources for the substitution of fossil fuels. Biodiesel can replace petroleum diesel, as it is produced from animal fats and vegetable oils, which generate about 10% (w/w) glycerol as the main by-product. The excess glycerol generated may become an environmental problem. since it cannot be disposed of in the environment. One of the possible applications is its use as carbon and energy source for microbial growth in industrial microbiology. Glycerol bioconversion in valuable chemicals, such as 1,3-propanediol, dihydroxyacetone, ethanol, succinate etc. is discussed in this review article. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Por razões econômicas e de proteção à saúde, pesquisas têm sido dirigidas para ampliar a estabilidade dos óleos vegetais. Existe uma tendência para a adição de antioxidantes naturais, em particular, um crescente interesse em ervas e especiarias. Desta forma, os objetivos deste trabalho foram avaliar o potencial antioxidante das oleorresinas de orégano, manjericão e tomilho e seu comportamento ao serem aplicadas ao óleo de soja em diferentes concentrações. Numa primeira etapa foi determinada a atividade antioxidante pelo sistema β-caroteno/ácido linoleico e a quantificação de compostos fenólicos totais. Posteriormente, foram adicionadas ao óleo de soja diferentes concentrações das oleorresinas (500 a 3000 mg.kg-1) e analisado seu potencial antioxidante por meio da estabilidade oxidativa utilizando o Rancimat. A concentração de 3000 mg.kg-1das oleorresinas de orégano e tomilho foi a que apresentou melhor estabilidade oxidativa ao óleo de soja, o que as tornam alternativa natural na conservação de óleos vegetais.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
BACKGROUND: Bioactive compounds are capable of providing health benefits, reducing disease incidence or favoring body functioning. There is a growing search for vegetable oils containing such compounds. This study aimed to characterize the pulp and kernel oils of the Brazilian palm species guariroba (Syagrus oleracea), jeriva (Syagrus romanzoffiana) and macauba (Acrocomia aculeata), aiming at possible uses in several industries.RESULTS: Fatty acid composition, phenolic and carotenoid contents, tocopherol composition were evaluated. The majority of the fatty acids in pulps were oleic and linoleic; macauba pulp contained 526 g kg(-1) of oleic acid. Lauric acid was detected in the kernels of all three species as the major saturated fatty acid, in amounts ranging from 325.8 to 424.3 g kg(-1). The jeriva pulp contained carotenoids and tocopherols on average of 1219 mu g g(-1) and 323.50 mg kg(-1), respectively.CONCLUSION: The pulps contained more unsaturated fatty acids than the kernels, mainly oleic and linoleic. Moreover, the pulps showed higher carotenoid and tocopherol contents. The kernels showed a predominance of saturated fatty acids, especially lauric acid. The fatty acid profiles of the kernels suggest that these oils may be better suited for the cosmetic and pharmaceutical industries than for use in foods. (C) 2011 Society of Chemical Industry