945 resultados para Louça de mesa
Resumo:
Este trabajo se enmarca dentro de una investigación más amplia cuyo principal objetivo es indagar sobre la capacidad de los estudiantes de educación secundaria para traducir y relacionar enunciados algebraicos presentados en los sistemas de representación simbólico y verbal. La recogida de datos se realizó con 26 estudiantes de 4º de ESO a los que se propuso la construcción de un dominó algebraico, diseñado para esta investigación, y su posterior uso en un torneo. En este artículo presentamos un análisis de los errores cometidos en dichas traducciones. Entre los resultados obtenidos, destacamos que los estudiantes encontraron mayor facilidad al traducir enunciados de su representación simbólica a su representación verbal y que la mayoría de los errores cometidos al traducir de la expresión verbal a la simbólica son derivados de las características propias del lenguaje algebraico.
Resumo:
AUTONOMÍA ESCOLAR Y PLANIFICACIÓN EN MATEMÁTICAS La autonomía escolar se estableció en Colombia en 1994, con la intención de que las instituciones educativas adaptaran el currículo a su contexto. Como consecuencia, instituciones y profesores se hicieron responsables del diseño curricular en todas las áreas, con la guía de lineamientos curriculares publicados por el gobierno. Estos diseños curriculares que se plasman en el plan de área. En este trabajo caracterizamos los planes de área de matemáticas en una muestra de conveniencia de 18 colegios de educación básica secundaria y educación media de Bogotá y sus cercanías y exploramos en qué medida se llevan a la práctica los lineamientos gubernamentales en esos documentos. Codificamos los planes de área teniendo en cuenta las cuatro componentes del currículo: el contenido, los objetivos, la metodología y la evaluación. Para cada una de estas componentes, establecimos:1. el nivel de generalidad con el que se trata, 2. los términos que las instituciones utilizan para referirse a ella y 3. la coherencia y la estructura con la que las instituciones la describen. Los resultados ponen de manifiesto la variedad de aproximaciones de las instituciones de la muestra a la planificación del área de matemáticas. Esta variedad se constata en el número de niveles de generalidad que aparecen en los documentos, en la diversidad de términos que se utilizan para referirse a cada uno de los componentes curriculares y en el nivel de detalle con que se describen. Los resultados sugieren que, en las instituciones de la muestra en las que las ideas de estándar y competencia aparecen en el plan de área, estas ideas no juegan un papel organizador del diseño curricular. Así mismo, los resultados muestran que no existe un significado compartido para los términos “estándar”, “objetivo”, “logro” o “desempeño” entre los documentos de la muestra. Adicionalmente, hemos observado que no se constata coherencia entre esta expectativa de aprendizaje y el contenido propuesto dentro de la planificación. Estos resultados nos llevan a conjeturar que, en las instituciones a las que pertenecen los documentos de la muestra, no existe una aproximación sistemática, estructurada y fundamentada a la planificación curricular.
Resumo:
In this exploratory research we analyze the structure sense evidenced by 33 secondary students (16-18 years old) in tasks requiring to reproduce the structure of given algebraic expressions. The expressions used were algebraic fractions related to algebraic identities. There were big differences between the students performance which allowed differencing levels in students´ structure sense. Questions and conjectures to be addressed in future research are presented.
Resumo:
El concepto de límite es importante en la educación media, dado que es relevante para introducir otros conceptos como continuidad, derivada, integral, entre otras; de igual manera, sabemos desde diversos autores y desde nuestra experiencia con el aprendizaje de límites, que su enseñanza ha sido algorítmica y tradicional, por lo tanto, se hace necesario replantear este tratamiento y proponer una forma dinámica, para que el estudiante pueda superar algunos de los obstáculos propuestos por Sierpinska (1987). Para esto, proponemos diseñar actividades que busca tratar y/o superar el obstáculo geométrico referido al concepto de límite, basado en un trabajo colaborativo que tendrá lugar en sesiones virtuales en horarios extraclase, que estarán apoyadas por sesiones presenciales (dentro del aula).
Resumo:
El concepto de límite es difícil de enseñar y aprender, dado que trae consigo diversos obstáculos que deben ser superados en su totalidad para aprender dicho concepto; por lo tanto crear actividades que permitan su comprensión contribuirá significativamente a facilitar este proceso (enseñanza- aprendizaje). De esta manera se proponen cuatro actividades que parten de la construcción del fractal “árbol pitagórico”; dicho fractal aporta al tratamiento del obstáculo geométrico del concepto de límite. Este obstáculo surge a través de la evolución del concepto de límite y es precisamente de la historia de donde surgen las actividades que se aplican a estudiantes de grado undécimo en entornos virtuales y presenciales, mediadas por el trabajo colaborativo.
Resumo:
Se presentan dos investigaciones que se están desarrollando y que surgen del interés por hacer más accesible el álgebra escolar a los estudiantes. Se describen los objetivos de investigación, el método, el análisis de datos, los resultados más relevantes y las conclusiones de cada una de las investigaciones. Se destacan las implicaciones que pueden tener para la docencia en los niveles educativos en los que se lleva a cabo (educación secundaria y educación primaria, respectivamente).
Resumo:
Expongo una conceptualización de aprendizaje desde la teoría de la práctica social que se concreta en una propuesta sobre cómo ver el aprendizaje de la demostración en geometría euclidiana plana. Las ideas se ilustran con fragmentos de la actividad académica realizada por estudiantes de segundo semestre de Licenciatura en Matemáticas. La conferencia está dirigida a futuros profesores, profesores de matemáticas de secundaria y formadores de docentes.
Resumo:
tema en el contexto educativo colombiano, llevan a que dos profesores de matemáticas de educación básica y media, se den a la tarea de diseñar y desarrollar una propuesta para la superación de sesgos en el razonamiento probabilístico de sus estudiantes. De esta manera, en el marco de la investigación-acción, se recoge la experiencia y reflexión de tres implementaciones de aula consecutivas: La primera con estudiantes de grado décimo, cuyo énfasis estuvo dado en el enfoque clásico de probabilidad, que llevó a que los estudiantes no tuvieran cambios significativos en sus argumentaciones respecto a los fenómenos de probabilidad; la segunda con estudiantes de grado séptimo, donde el enfoque fue netamente experimental, convirtiéndose en un obstáculo para desarrollar procesos de institucionalización del saber, que permitieran a los estudiantes formalizar algunos conceptos. Las reflexiones suscintas a esta experiencia llevaron al desarrollo de una tercera, también con estudiantes de grado séptimo, pero en otra institución, donde se construyó de manera conjunta y horizontal con los estudiantes una situación problema abierta a los dos enfoques de probabilidad (clásico y experimental) que permitió desarrollar las actividades de acuerdo al avance de cada grupo en el proceso de resolución. De ésta manera se contribuyó en forma significativa a la superación de sesgos probabilísticos, y se consolidó para nosotros un instrumento modelo para la enseñanza de las matemáticas.
Resumo:
En esta comunicación reportamos algunos avances de una investigación en la que pretendemos que los estudiantes reconozcan variables propias de un contexto cafetero para la constitución de sus propios modelos matemáticos en un proceso de modelación. La investigación se viene adelantando con metodología cualitativa puesto que nos posibilita hacer un estudio detallado en el contexto, debido a que posee un fuerte componente descriptivo que permite a través de la recolección de datos una profunda y significativa comprensión En esta comunicación reportamos algunos avances de una investigación en la que pretendemos que los estudiantes reconozcan variables propias de un contexto cafetero para la constitución de sus propios modelos matemáticos en un proceso de modelación. La investigación se viene adelantando con metodología cualitativa puesto que nos posibilita hacer un estudio detallado en el contexto, debido a que posee un fuerte componente descriptivo que permite a través de la recolección de datos una profunda y significativa comprensión.
Resumo:
En este trabajo se pretende evidenciar, mediante experiencias de aula, que la estrategia metodológica de Resolución de Problemas planteadas por Pólya (1965), Shoenfeld (1985) y Brousseau (1986), desarrolla competencias básicas, genéricas y específicas. Los resultados muestran que las actividades de resolución de problemas planteadas promovieron la comprensión lectora, el trabajo en equipo, la capacidad de razonamiento y argumentación frente a sus compañeros/as, la capacidad lógica de reconocimiento, el descubrimiento de patrones, exploración de problemas similares, reformulación de problemas, trabajo hacia atrás, la participación activa de los estudiantes y el desarrollo de líderes (Espinoza, et al., 2008)
Resumo:
La formación inicial de los docentes se constituye como un proceso de vital importancia para las definiciones de una educación de calidad, la cual es una necesidad vigente. Tal y como afirma Esteve (2009) los cambios de la sociedad y sus efectos en el ámbito educativo se convierten en un elemento esencial para orientar el trabajo de los profesores, ya que los nuevos desafíos y exigencias del entorno marcan las pautas para diseñar el proceso formativo de los mismos y el camino para su desarrollo profesional. Considerando este desafío nos dimos a la tarea de elaborar, implementar y analizar un diseño instruccional centrado en estudiar y promover el aprendizaje de la razón y la proporcionalidad, desde un enfoque funcional del conocimiento matemático. En esta conferencia compartiré los aspectos fundamentales del experimento de enseñanza que desarrollamos para lograrlo.
Resumo:
Description of some variables used in PISA 2003 project to asses competences.
Resumo:
Los programas de estudio de Matemática en Costa Rica, proponen la Resolución de Problemas en contextos reales como estrategia metodológica principal y el Planteamiento de Problemas como uno de los cinco procesos matemáticos. Así, este estudio analiza algunos elementos que intervienen en el proceso de enseñanza y aprendizaje de contenidos matemáticos empleando dicha estrategia y el papel del planteamiento de problemas como actividad complementaria en dicho proceso. Los resultados muestran la importancia del trabajo del profesor como organizador y guía de la clase y del estudiante como responsable de resolver el problema; así como del gran valor educativo que tiene el planteamiento de problemas en el proceso de resolución de problemas.
Resumo:
Los educadores estadísticos consideran que la alfabetización estadística es un requisito indispensable para entender el entorno y la información disponible, para evaluar críticamente esa información y para tomar decisiones en situaciones de incertidumbre informadas y soportadas en argumentos. El ciclo investigativo PPDAC —Problema, Plan, Datos, Análisis y Conclusiones— es una propuesta para organizar la clase de estadística, con la que se puede promover el razonamiento estadístico y la formación de una cultura estadística. Como organizador de la clase, se constituye en un ambiente propicio para contribuir a la formación estadística, con procesos de participación que impliquen aprendizajes colaborativos. En esta conferencia se amplían y ejemplifican estos temas.
Resumo:
En esta conferencia presentaré algunos resultados del estudio realizado sobre un fenómeno relacionado con la articulación de los sentidos asignados por estudiantes a diferentes representaciones de un objeto matemático, obtenidas mediante transformaciones semióticas de tratamiento. En este estudio describí y analicé algunos procesos de asignación de sentidos logrados por los estudiantes de grados 9o y 11o de educación básica y media (Colombia), en relación con tareas específicas en las que requieren realizar dichos tratamientos entre representaciones, y reporté algunas dificultades asociadas.