844 resultados para Local classification method
Resumo:
Most fusion satellite image methodologies at pixel-level introduce false spatial details, i.e.artifacts, in the resulting fusedimages. In many cases, these artifacts appears because image fusion methods do not consider the differences in roughness or textural characteristics between different land covers. They only consider the digital values associated with single pixels. This effect increases as the spatial resolution image increases. To minimize this problem, we propose a new paradigm based on local measurements of the fractal dimension (FD). Fractal dimension maps (FDMs) are generated for each of the source images (panchromatic and each band of the multi-spectral images) with the box-counting algorithm and by applying a windowing process. The average of source image FDMs, previously indexed between 0 and 1, has been used for discrimination of different land covers present in satellite images. This paradigm has been applied through the fusion methodology based on the discrete wavelet transform (DWT), using the à trous algorithm (WAT). Two different scenes registered by optical sensors on board FORMOSAT-2 and IKONOS satellites were used to study the behaviour of the proposed methodology. The implementation of this approach, using the WAT method, allows adapting the fusion process to the roughness and shape of the regions present in the image to be fused. This improves the quality of the fusedimages and their classification results when compared with the original WAT method
Resumo:
A finite element model was used to simulate timberbeams with defects and predict their maximum load in bending. Taking into account the elastoplastic constitutive law of timber, the prediction of fracture load gives information about the mechanisms of timber failure, particularly with regard to the influence of knots, and their local graindeviation, on the fracture. A finite element model was constructed using the ANSYS element Plane42 in a plane stress 2D-analysis, which equates thickness to the width of the section to create a mesh which is as uniform as possible. Three sub-models reproduced the bending test according to UNE EN 408: i) timber with holes caused by knots; ii) timber with adherent knots which have structural continuity with the rest of the beam material; iii) timber with knots but with only partial contact between knot and beam which was artificially simulated by means of contact springs between the two materials. The model was validated using ten 45 × 145 × 3000 mm beams of Pinus sylvestris L. which presented knots and graindeviation. The fracture stress data obtained was compared with the results of numerical simulations, resulting in an adjustment error less of than 9.7%
Resumo:
A land classification method was designed for the Community of Madrid (CM), which has lands suitable for either agriculture use or natural spaces. The process started from an extensive previous CM study that contains sets of land attributes with data for 122 types and a minimum-requirements method providing a land quality classification (SQ) for each land. Borrowing some tools from Operations Research (OR) and from Decision Science, that SQ has been complemented by an additive valuation method that involves a more restricted set of 13 representative attributes analysed using Attribute Valuation Functions to obtain a quality index, QI, and by an original composite method that uses a fuzzy set procedure to obtain a combined quality index, CQI, that contains relevant information from both the SQ and the QI methods.
Resumo:
Free people association constructed from button to above to get better conditions of people using local resources, are among others, elements of local development. LEADER (Liaisons HQWUH DFWLYLWpV GH 'HYHORSHPHQW GH /¶(FRQRPLH 5XUDO) is the Europe Union model of rural development. The LEADER method is conformed in seven features which are factors of success in the approach of applying in different territories . The actions held in the municipal council of rural development of San Andres C a l p a n during 2010 showed some elements of LEADER for it´s adjustment: 1).- territory definition , 2).- local association , 3).- financing. It´s used a methodology consists of reviewing documents about the financing and association in the territory studied, survey applying t define the model of agricultural production and development along with mayors of different municipalities, the economical and social actors. The definition performance field with territory integration of citizen councils as groups of local action and a financing strategy are part of the results of this process of adapting in this territory
Resumo:
Tras el devastador terremoto del 12 de enero de 2010 en Puerto Príncipe, Haití, las autoridades locales, numerosas ONGs y organismos nacionales e internacionales están trabajando en el desarrollo de estrategias para minimizar el elevado riesgo sísmico existente en el país. Para ello es necesario, en primer lugar, estimar dicho riesgo asociado a eventuales terremotos futuros que puedan producirse, evaluando el grado de pérdidas que podrían generar, para dimensionar la catástrofe y actuar en consecuencia, tanto en lo referente a medidas preventivas como a adopción de planes de emergencia. En ese sentido, este Trabajo Fin de Master aporta un análisis detallado del riesgo sísmico asociado a un futuro terremoto que podría producirse con probabilidad razonable, causando importantes daños en Puerto Príncipe. Se propone para ello una metodología de cálculo del riesgo adaptada a los condicionantes de la zona, con modelos calibrados empleando datos del sismo de 2010. Se ha desarrollado en el marco del proyecto de cooperación Sismo-Haití, financiado por la Universidad Politécnica de Madrid, que comenzó diez meses después del terremoto de 2010 como respuesta a una petición de ayuda del gobierno haitiano. El cálculo del riesgo requiere la consideración de dos inputs: la amenaza sísmica o movimiento esperado por el escenario definido (sismo de cierta magnitud y localización) y los elementos expuestos a esta amenaza (una clasificación del parque inmobiliario en diferentes tipologías constructivas, así como su vulnerabilidad). La vulnerabilidad de estas tipologías se describe por medio de funciones de daño: espectros de capacidad, que representan su comportamiento ante las fuerzas horizontales motivadas por los sismos, y curvas de fragilidad, que representan la probabilidad de que las estructuras sufran daños al alcanzar el máximo desplazamiento horizontal entre plantas debido a la mencionada fuerza horizontal. La metodología que se propone especifica determinadas pautas y criterios para estimar el movimiento, asignar la vulnerabilidad y evaluar el daño, cubriendo los tres estados del proceso. Por una parte, se consideran diferentes modelos de movimiento fuerte incluyendo el efecto local, y se identifican los que mejor ajustan a las observaciones de 2010. Por otra se clasifica el parque inmobiliario en diferentes tipologías constructivas, en base a la información extraída en una campaña de campo y utilizando además una base de datos aportada por el Ministerio de Obras Públicas de Haití. Ésta contiene información relevante de todos los edificios de la ciudad, resultando un total de 6 tipologías. Finalmente, para la estimación del daño se aplica el método capacidad-demanda implementado en el programa SELENA (Molina et al., 2010). En primer lugar, utilizado los datos de daño del terremoto de 2010, se ha calibrado el modelo propuesto de cálculo de riesgo sísmico: cuatro modelos de movimiento fuerte, tres modelos de tipo de suelo y un conjunto de funciones de daño. Finalmente, con el modelo calibrado, se ha simulado un escenario sísmico determinista correspondiente a un posible terremoto con epicentro próximo a Puerto Príncipe. Los resultados muestran que los daños estructurales serán considerables y podrán llevar a pérdidas económicas y humanas que causen un gran impacto en el país, lo que pone de manifiesto la alta vulnerabilidad estructural existente. Este resultado será facilitado a las autoridades locales, constituyendo una base sólida para toma de decisiones y adopción de políticas de prevención y mitigación del riesgo. Se recomienda dirigir esfuerzos hacia la reducción de la vulnerabilidad estructural - mediante refuerzo de edificios vulnerables y adopción de una normativa sismorresistente- y hacia el desarrollo de planes de emergencia. Abstract After the devastating 12 January 2010 earthquake that hit the city of Port-au-Prince, Haiti, strategies to minimize the high seismic risk are being developed by local authorities, NGOs, and national and international institutions. Two important tasks to reach this objective are, on the one hand, the evaluation of the seismic risk associated to possible future earthquakes in order to know the dimensions of the catastrophe; on the other hand, the design of preventive measures and emergency plans to minimize the consequences of such events. In this sense, this Master Thesis provides a detailed estimation of the damage that a possible future earthquake will cause in Port-au-Prince. A methodology to calculate the seismic risk is proposed, adapted to the study area conditions. This methodology has been calibrated using data from the 2010 earthquake. It has been conducted in the frame of the Sismo-Haiti cooperative project, supported by the Technical University of Madrid, which started ten months after the 2010 earthquake as an answer to an aid call of the Haitian government. The seismic risk calculation requires two inputs: the seismic hazard (expected ground motion due to a scenario earthquake given by magnitude and location) and the elements exposed to the hazard (classification of the building stock into building typologies, as well as their vulnerability). This vulnerability is described through the damage functions: capacity curves, which represent the structure performance against the horizontal forces caused by the seisms; and fragility curves, which represent the probability of damage as the structure reaches the maximum spectral displacement due to the horizontal force. The proposed methodology specifies certain guidelines and criteria to estimate the ground motion, assign the vulnerability, and evaluate the damage, covering the whole process. Firstly, different ground motion prediction equations including the local effect are considered, and the ones that have the best correlation with the observations of the 2010 earthquake, are identified. Secondly, the classification of building typologies is made by using the information collected during a field campaign, as well as a data base provided by the Ministry of Public Works of Haiti. This data base contains relevant information about all the buildings in the city, leading to a total of 6 different typologies. Finally, the damage is estimated using the capacity-spectrum method as implemented in the software SELENA (Molina et al., 2010). Data about the damage caused by the 2010 earthquake have been used to calibrate the proposed calculation model: different choices of ground motion relationships, soil models, and damage functions. Then, with the calibrated model, a deterministic scenario corresponding to an epicenter close to Port-au-Prince has been simulated. The results show high structural damage, and therefore, they point out the high structural vulnerability in the city. Besides, the economic and human losses associated to the damage would cause a great impact in the country. This result will be provided to the Haitian Government, constituting a scientific base for decision making and for the adoption of measures to prevent and mitigate the seismic risk. It is highly recommended to drive efforts towards the quality control of the new buildings -through reinforcement and construction according to a seismic code- and the development of emergency planning.
Resumo:
The Simultaneous Multiple Surfaces (SMS) was developed as a design method in Nonimaging Optics during the 90s. Later, the method was extended for designing Imaging Optics. We present an overview of the method applied to imaging optics in planar (2D) geometry and compare the results with more classical designs based on achieving aplanatism of different orders. These classical designs are also viewed as particular cases of SMS designs. Systems with up to 4 aspheric surfaces are shown. The SMS design strategy is shown to perform always better than the classical design (in terms of image quality). Moreover, the SMS method is a direct method, i.e., it is not based in multi-parametric optimization techniques. This gives the SMS method an additional interest since it can be used for exploring solutions where the multiparameter techniques can get lost because of the multiple local minima
Resumo:
The aim of this research was to implement a methodology through the generation of a supervised classifier based on the Mahalanobis distance to characterize the grapevine canopy and assess leaf area and yield using RGB images. The method automatically processes sets of images, and calculates the areas (number of pixels) corresponding to seven different classes (Grapes, Wood, Background, and four classes of Leaf, of increasing leaf age). Each one is initialized by the user, who selects a set of representative pixels for every class in order to induce the clustering around them. The proposed methodology was evaluated with 70 grapevine (V. vinifera L. cv. Tempranillo) images, acquired in a commercial vineyard located in La Rioja (Spain), after several defoliation and de-fruiting events on 10 vines, with a conventional RGB camera and no artificial illumination. The segmentation results showed a performance of 92% for leaves and 98% for clusters, and allowed to assess the grapevine’s leaf area and yield with R2 values of 0.81 (p < 0.001) and 0.73 (p = 0.002), respectively. This methodology, which operates with a simple image acquisition setup and guarantees the right number and kind of pixel classes, has shown to be suitable and robust enough to provide valuable information for vineyard management.
Resumo:
Abstract Web 2.0 applications enabled users to classify information resources using their own vocabularies. The bottom-up nature of these user-generated classification systems have turned them into interesting knowledge sources, since they provide a rich terminology generated by potentially large user communities. Previous research has shown that it is possible to elicit some emergent semantics from the aggregation of individual classifications in these systems. However the generation of ontologies from them is still an open research problem. In this thesis we address the problem of how to tap into user-generated classification systems for building domain ontologies. Our objective is to design a method to develop domain ontologies from user-generated classifications systems. To do so, we rely on ontologies in the Web of Data to formalize the semantics of the knowledge collected from the classification system. Current ontology development methodologies have recognized the importance of reusing knowledge from existing resources. Thus, our work is framed within the NeOn methodology scenario for building ontologies by reusing and reengineering non-ontological resources. The main contributions of this work are: An integrated method to develop ontologies from user-generated classification systems. With this method we extract a domain terminology from the classification system and then we formalize the semantics of this terminology by reusing ontologies in the Web of Data. Identification and adaptation of existing techniques for implementing the activities in the method so that they can fulfill the requirements of each activity. A novel study about emerging semantics in user-generated lists. Resumen La web 2.0 permitió a los usuarios clasificar recursos de información usando su propio vocabulario. Estos sistemas de clasificación generados por usuarios son recursos interesantes para la extracción de conocimiento debido principalmente a que proveen una extensa terminología generada por grandes comunidades de usuarios. Se ha demostrado en investigaciones previas que es posible obtener una semántica emergente de estos sistemas. Sin embargo la generación de ontologías a partir de ellos es todavía un problema de investigación abierto. Esta tesis trata el problema de cómo aprovechar los sistemas de clasificación generados por usuarios en la construcción de ontologías de dominio. Así el objetivo de la tesis es diseñar un método para desarrollar ontologías de dominio a partir de sistemas de clasificación generados por usuarios. El método propuesto reutiliza conceptualizaciones existentes en ontologías publicadas en la Web de Datos para formalizar la semántica del conocimiento que se extrae del sistema de clasificación. Por tanto, este trabajo está enmarcado dentro del escenario para desarrollar ontologías mediante la reutilización y reingeniería de recursos no ontológicos que se ha definido en la Metodología NeOn. Las principales contribuciones de este trabajo son: Un método integrado para desarrollar una ontología de dominio a partir de sistemas de clasificación generados por usuarios. En este método se extrae una terminología de dominio del sistema de clasificación y posteriormente se formaliza su semántica reutilizando ontologías en la Web de Datos. La identificación y adaptación de un conjunto de técnicas para implementar las actividades propuestas en el método de tal manera que puedan cumplir automáticamente los requerimientos de cada actividad. Un novedoso estudio acerca de la semántica emergente en las listas generadas por usuarios en la Web.
Resumo:
Abstract Due to recent scientific and technological advances in information sys¬tems, it is now possible to perform almost every application on a mobile device. The need to make sense of such devices more intelligent opens an opportunity to design data mining algorithm that are able to autonomous execute in local devices to provide the device with knowledge. The problem behind autonomous mining deals with the proper configuration of the algorithm to produce the most appropriate results. Contextual information together with resource information of the device have a strong impact on both the feasibility of a particu¬lar execution and on the production of the proper patterns. On the other hand, performance of the algorithm expressed in terms of efficacy and efficiency highly depends on the features of the dataset to be analyzed together with values of the parameters of a particular implementation of an algorithm. However, few existing approaches deal with autonomous configuration of data mining algorithms and in any case they do not deal with contextual or resources information. Both issues are of particular significance, in particular for social net¬works application. In fact, the widespread use of social networks and consequently the amount of information shared have made the need of modeling context in social application a priority. Also the resource consumption has a crucial role in such platforms as the users are using social networks mainly on their mobile devices. This PhD thesis addresses the aforementioned open issues, focusing on i) Analyzing the behavior of algorithms, ii) mapping contextual and resources information to find the most appropriate configuration iii) applying the model for the case of a social recommender. Four main contributions are presented: - The EE-Model: is able to predict the behavior of a data mining algorithm in terms of resource consumed and accuracy of the mining model it will obtain. - The SC-Mapper: maps a situation defined by the context and resource state to a data mining configuration. - SOMAR: is a social activity (event and informal ongoings) recommender for mobile devices. - D-SOMAR: is an evolution of SOMAR which incorporates the configurator in order to provide updated recommendations. Finally, the experimental validation of the proposed contributions using synthetic and real datasets allows us to achieve the objectives and answer the research questions proposed for this dissertation.
Resumo:
This paper present an environmental contingency forecasting tool based on Neural Networks (NN). Forecasting tool analyzes every hour and daily Sulphur Dioxide (SO2) concentrations and Meteorological data time series. Pollutant concentrations and meteorological variables are self-organized applying a Self-organizing Map (SOM) NN in different classes. Classes are used in training phase of a General Regression Neural Network (GRNN) classifier to provide an air quality forecast. In this case a time series set obtained from Environmental Monitoring Network (EMN) of the city of Salamanca, Guanajuato, México is used. Results verify the potential of this method versus other statistical classification methods and also variables correlation is solved.
Resumo:
Background: Analysis of exhaled volatile organic compounds (VOCs) in breath is an emerging approach for cancer diagnosis, but little is known about its potential use as a biomarker for colorectal cancer (CRC). We investigated whether a combination of VOCs could distinct CRC patients from healthy volunteers. Methods: In a pilot study, we prospectively analyzed breath exhalations of 38 CRC patient and 43 healthy controls all scheduled for colonoscopy, older than 50 in the average-risk category. The samples were ionized and analyzed using a Secondary ElectroSpray Ionization (SESI) coupled with a Time-of-Flight Mass Spectrometer (SESI-MS). After a minimum of 2 hours fasting, volunteers deeply exhaled into the system. Each test requires three soft exhalations and takes less than ten minutes. No breath condensate or collection are required and VOCs masses are detected in real time, also allowing for a spirometric profile to be analyzed along with the VOCs. A new sampling system precludes ambient air from entering the system, so background contamination is reduced by an overall factor of ten. Potential confounding variables from the patient or the environment that could interfere with results were analyzed. Results: 255 VOCs, with masses ranging from 30 to 431 Dalton have been identified in the exhaled breath. Using a classification technique based on the ROC curve for each VOC, a set of 9 biomarkers discriminating the presence of CRC from healthy volunteers was obtained, showing an average recognition rate of 81.94%, a sensitivity of 87.04% and specificity of 76.85%. Conclusions: A combination of cualitative and cuantitative analysis of VOCs in the exhaled breath could be a powerful diagnostic tool for average-risk CRC population. These results should be taken with precaution, as many endogenous or exogenous contaminants could interfere as confounding variables. On-line analysis with SESI-MS is less time-consuming and doesn’t need sample preparation. We are recruiting in a new pilot study including breath cleaning procedures and spirometric analysis incorporated into the postprocessing algorithms, to better control for confounding variables.
Resumo:
This paper studies the problem of determining the position of beacon nodes in Local Positioning Systems (LPSs), for which there are no inter-beacon distance measurements available and neither the mobile node nor any of the stationary nodes have positioning or odometry information. The common solution is implemented using a mobile node capable of measuring its distance to the stationary beacon nodes within a sensing radius. Many authors have implemented heuristic methods based on optimization algorithms to solve the problem. However, such methods require a good initial estimation of the node positions in order to find the correct solution. In this paper we present a new method to calculate the inter-beacon distances, and hence the beacons positions, based in the linearization of the trilateration equations into a closed-form solution which does not require any approximate initial estimation. The simulations and field evaluations show a good estimation of the beacon node positions.
Resumo:
Resumen El diseño de sistemas ópticos, entendido como un arte por algunos, como una ciencia por otros, se ha realizado durante siglos. Desde los egipcios hasta nuestros días los sistemas de formación de imagen han ido evolucionando así como las técnicas de diseño asociadas. Sin embargo ha sido en los últimos 50 años cuando las técnicas de diseño han experimentado su mayor desarrollo y evolución, debido, en parte, a la aparición de nuevas técnicas de fabricación y al desarrollo de ordenadores cada vez más potentes que han permitido el cálculo y análisis del trazado de rayos a través de los sistemas ópticos de forma rápida y eficiente. Esto ha propiciado que el diseño de sistemas ópticos evolucione desde los diseños desarrollados únicamente a partir de la óptica paraxial hasta lo modernos diseños realizados mediante la utilización de diferentes técnicas de optimización multiparamétrica. El principal problema con el que se encuentra el diseñador es que las diferentes técnicas de optimización necesitan partir de un diseño inicial el cual puede fijar las posibles soluciones. Dicho de otra forma, si el punto de inicio está lejos del mínimo global, o diseño óptimo para las condiciones establecidas, el diseño final puede ser un mínimo local cerca del punto de inicio y lejos del mínimo global. Este tipo de problemática ha llevado al desarrollo de sistemas globales de optimización que cada vez sean menos sensibles al punto de inicio de la optimización. Aunque si bien es cierto que es posible obtener buenos diseños a partir de este tipo de técnicas, se requiere de muchos intentos hasta llegar a la solución deseada, habiendo un entorno de incertidumbre durante todo el proceso, puesto que no está asegurado el que se llegue a la solución óptima. El método de las Superficies Múltiples Simultaneas (SMS), que nació como una herramienta de cálculo de concentradores anidólicos, se ha demostrado como una herramienta también capaz utilizarse para el diseño de sistemas ópticos formadores de imagen, aunque hasta la fecha se ha utilizado para el diseño puntual de sistemas de formación de imagen. Esta tesis tiene por objeto presentar el SMS como un método que puede ser utilizado de forma general para el diseño de cualquier sistema óptico de focal fija o v afocal con un aumento definido así como una herramienta que puede industrializarse para ayudar al diseñador a afrontar de forma sencilla el diseño de sistemas ópticos complejos. Esta tesis está estructurada en cinco capítulos: El capítulo 1, es un capítulo de fundamentos donde se presentan los conceptos fundamentales necesarios para que el lector, aunque no posea una gran base en óptica formadora de imagen, pueda entender los planteamientos y resultados que se presentan en el resto de capítulos El capitulo 2 aborda el problema de la optimización de sistemas ópticos, donde se presenta el método SMS como una herramienta idónea para obtener un punto de partida para el proceso de optimización. Mediante un ejemplo aplicado se demuestra la importancia del punto de partida utilizado en la solución final encontrada. Además en este capítulo se presentan diferentes técnicas que permiten la interpolación y optimización de las superficies obtenidas a partir de la aplicación del SMS. Aunque en esta tesis se trabajará únicamente utilizando el SMS2D, se presenta además un método para la interpolación y optimización de las nubes de puntos obtenidas a partir del SMS3D basado en funciones de base radial (RBF). En el capítulo 3 se presenta el diseño, fabricación y medidas de un objetivo catadióptrico panorámico diseñado para trabajar en la banda del infrarrojo lejano (8-12 μm) para aplicaciones de vigilancia perimetral. El objetivo presentado se diseña utilizando el método SMS para tres frentes de onda de entrada utilizando cuatro superficies. La potencia del método de diseño utilizado se hace evidente en la sencillez con la que este complejo sistema se diseña. Las imágenes presentadas demuestran cómo el prototipo desarrollado cumple a la perfección su propósito. El capítulo 4 aborda el problema del diseño de sistemas ópticos ultra compactos, se introduce el concepto de sistemas multicanal, como aquellos sistemas ópticos compuestos por una serie de canales que trabajan en paralelo. Este tipo de sistemas resultan particularmente idóneos para él diseño de sistemas afocales. Se presentan estrategias de diseño para sistemas multicanal tanto monocromáticos como policromáticos. Utilizando la novedosa técnica de diseño que en este capítulo se presenta el diseño de un telescopio de seis aumentos y medio. En el capítulo 5 se presenta una generalización del método SMS para rayos meridianos. En este capítulo se presenta el algoritmo que debe utilizarse para el diseño de cualquier sistema óptico de focal fija. La denominada optimización fase 1 se vi introduce en el algoritmo presentado de forma que mediante el cambio de las condiciones iníciales del diseño SMS que, aunque el diseño se realice para rayos meridianos, los rayos skew tengan un comportamiento similar. Para probar la potencia del algoritmo desarrollado se presenta un conjunto de diseños con diferente número de superficies. La estabilidad y potencia del algoritmo se hace evidente al conseguirse por primera vez el diseño de un sistema de seis superficies diseñado por SMS. vii Abstract The design of optical systems, considered an art by some and a science by others, has been developed for centuries. Imaging optical systems have been evolving since Ancient Egyptian times, as have design techniques. Nevertheless, the most important developments in design techniques have taken place over the past 50 years, in part due to the advances in manufacturing techniques and the development of increasingly powerful computers, which have enabled the fast and efficient calculation and analysis of ray tracing through optical systems. This has led to the design of optical systems evolving from designs developed solely from paraxial optics to modern designs created by using different multiparametric optimization techniques. The main problem the designer faces is that the different optimization techniques require an initial design which can set possible solutions as a starting point. In other words, if the starting point is far from the global minimum or optimal design for the set conditions, the final design may be a local minimum close to the starting point and far from the global minimum. This type of problem has led to the development of global optimization systems which are increasingly less sensitive to the starting point of the optimization process. Even though it is possible to obtain good designs from these types of techniques, many attempts are necessary to reach the desired solution. This is because of the uncertain environment due to the fact that there is no guarantee that the optimal solution will be obtained. The Simultaneous Multiple Surfaces (SMS) method, designed as a tool to calculate anidolic concentrators, has also proved useful for the design of image-forming optical systems, although until now it has occasionally been used for the design of imaging systems. This thesis aims to present the SMS method as a technique that can be used in general for the design of any optical system, whether with a fixed focal or an afocal with a defined magnification, and also as a tool that can be commercialized to help designers in the design of complex optical systems. The thesis is divided into five chapters. Chapter 1 establishes the basics by presenting the fundamental concepts which the reader needs to acquire, even if he/she doesn‟t have extensive knowledge in the field viii of image-forming optics, in order to understand the steps taken and the results obtained in the following chapters. Chapter 2 addresses the problem of optimizing optical systems. Here the SMS method is presented as an ideal tool to obtain a starting point for the optimization process. The importance of the starting point for the final solution is demonstrated through an example. Additionally, this chapter introduces various techniques for the interpolation and optimization of the surfaces obtained through the application of the SMS method. Even though in this thesis only the SMS2D method is used, we present a method for the interpolation and optimization of clouds of points obtained though the SMS3D method, based on radial basis functions (RBF). Chapter 3 presents the design, manufacturing and measurement processes of a catadioptric panoramic lens designed to work in the Long Wavelength Infrared (LWIR) (8-12 microns) for perimeter surveillance applications. The lens presented is designed by using the SMS method for three input wavefronts using four surfaces. The powerfulness of the design method used is revealed through the ease with which this complex system is designed. The images presented show how the prototype perfectly fulfills its purpose. Chapter 4 addresses the problem of designing ultra-compact optical systems. The concept of multi-channel systems, such as optical systems composed of a series of channels that work in parallel, is introduced. Such systems are especially suitable for the design of afocal systems. We present design strategies for multichannel systems, both monochromatic and polychromatic. A telescope designed with a magnification of six-and-a-half through the innovative technique exposed in this chapter is presented. Chapter 5 presents a generalization of the SMS method for meridian rays. The algorithm to be used for the design of any fixed focal optics is revealed. The optimization known as phase 1 optimization is inserted into the algorithm so that, by changing the initial conditions of the SMS design, the skew rays have a similar behavior, despite the design being carried out for meridian rays. To test the power of the developed algorithm, a set of designs with a different number of surfaces is presented. The stability and strength of the algorithm become apparent when the first design of a system with six surfaces if obtained through the SMS method.
Resumo:
The 12 January 2010, an earthquake hit the city of Port-au-Prince, capital of Haiti. The earthquake reached a magnitude Mw 7.0 and the epicenter was located near the town of Léogâne, approximately 25 km west of the capital. The earthquake occurred in the boundary region separating the Caribbean plate and the North American plate. This plate boundary is dominated by left-lateral strike slip motion and compression, and accommodates about 20 mm/y slip, with the Caribbean plate moving eastward with respect to the North American plate (DeMets et al., 2000). Initially the location and focal mechanism of the earthquake seemed to involve straightforward accommodation of oblique relative motion between the Caribbean and North American plates along the Enriquillo-Plantain Garden fault system (EPGFZ), however Hayes et al., (2010) combined seismological observations, geologic field data and space geodetic measurements to show that, instead, the rupture process involved slip on multiple faults. Besides, the authors showed that remaining shallow shear strain will be released in future surface-rupturing earthquakes on the EPGFZ. In December 2010, a Spanish cooperation project financed by the Politechnical University of Madrid started with a clear objective: Evaluation of seismic hazard and risk in Haiti and its application to the seismic design, urban planning, emergency and resource management. One of the tasks of the project was devoted to vulnerability assessment of the current building stock and the estimation of seismic risk scenarios. The study was carried out by following the capacity spectrum method as implemented in the software SELENA (Molina et al., 2010). The method requires a detailed classification of the building stock in predominant building typologies (according to the materials in the structure and walls, number of stories and age of construction) and the use of the building (residential, commercial, etc.). Later, the knowledge of the soil characteristics of the city and the simulation of a scenario earthquake will provide the seismic risk scenarios (damaged buildings). The initial results of the study show that one of the highest sources of uncertainties comes from the difficulty of achieving a precise building typologies classification due to the craft construction without any regulations. Also it is observed that although the occurrence of big earthquakes usually helps to decrease the vulnerability of the cities due to the collapse of low quality buildings and the reconstruction of seismically designed buildings, in the case of Port-au-Prince the seismic risk in most of the districts remains high, showing very vulnerable areas. Therefore the local authorities have to drive their efforts towards the quality control of the new buildings, the reinforcement of the existing building stock, the establishment of seismic normatives and the development of emergency planning also through the education of the population.
Resumo:
Hoy en día, con la evolución continua y rápida de las tecnologías de la información y los dispositivos de computación, se recogen y almacenan continuamente grandes volúmenes de datos en distintos dominios y a través de diversas aplicaciones del mundo real. La extracción de conocimiento útil de una cantidad tan enorme de datos no se puede realizar habitualmente de forma manual, y requiere el uso de técnicas adecuadas de aprendizaje automático y de minería de datos. La clasificación es una de las técnicas más importantes que ha sido aplicada con éxito a varias áreas. En general, la clasificación se compone de dos pasos principales: en primer lugar, aprender un modelo de clasificación o clasificador a partir de un conjunto de datos de entrenamiento, y en segundo lugar, clasificar las nuevas instancias de datos utilizando el clasificador aprendido. La clasificación es supervisada cuando todas las etiquetas están presentes en los datos de entrenamiento (es decir, datos completamente etiquetados), semi-supervisada cuando sólo algunas etiquetas son conocidas (es decir, datos parcialmente etiquetados), y no supervisada cuando todas las etiquetas están ausentes en los datos de entrenamiento (es decir, datos no etiquetados). Además, aparte de esta taxonomía, el problema de clasificación se puede categorizar en unidimensional o multidimensional en función del número de variables clase, una o más, respectivamente; o también puede ser categorizado en estacionario o cambiante con el tiempo en función de las características de los datos y de la tasa de cambio subyacente. A lo largo de esta tesis, tratamos el problema de clasificación desde tres perspectivas diferentes, a saber, clasificación supervisada multidimensional estacionaria, clasificación semisupervisada unidimensional cambiante con el tiempo, y clasificación supervisada multidimensional cambiante con el tiempo. Para llevar a cabo esta tarea, hemos usado básicamente los clasificadores Bayesianos como modelos. La primera contribución, dirigiéndose al problema de clasificación supervisada multidimensional estacionaria, se compone de dos nuevos métodos de aprendizaje de clasificadores Bayesianos multidimensionales a partir de datos estacionarios. Los métodos se proponen desde dos puntos de vista diferentes. El primer método, denominado CB-MBC, se basa en una estrategia de envoltura de selección de variables que es voraz y hacia delante, mientras que el segundo, denominado MB-MBC, es una estrategia de filtrado de variables con una aproximación basada en restricciones y en el manto de Markov. Ambos métodos han sido aplicados a dos problemas reales importantes, a saber, la predicción de los inhibidores de la transcriptasa inversa y de la proteasa para el problema de infección por el virus de la inmunodeficiencia humana tipo 1 (HIV-1), y la predicción del European Quality of Life-5 Dimensions (EQ-5D) a partir de los cuestionarios de la enfermedad de Parkinson con 39 ítems (PDQ-39). El estudio experimental incluye comparaciones de CB-MBC y MB-MBC con los métodos del estado del arte de la clasificación multidimensional, así como con métodos comúnmente utilizados para resolver el problema de predicción de la enfermedad de Parkinson, a saber, la regresión logística multinomial, mínimos cuadrados ordinarios, y mínimas desviaciones absolutas censuradas. En ambas aplicaciones, los resultados han sido prometedores con respecto a la precisión de la clasificación, así como en relación al análisis de las estructuras gráficas que identifican interacciones conocidas y novedosas entre las variables. La segunda contribución, referida al problema de clasificación semi-supervisada unidimensional cambiante con el tiempo, consiste en un método nuevo (CPL-DS) para clasificar flujos de datos parcialmente etiquetados. Los flujos de datos difieren de los conjuntos de datos estacionarios en su proceso de generación muy rápido y en su aspecto de cambio de concepto. Es decir, los conceptos aprendidos y/o la distribución subyacente están probablemente cambiando y evolucionando en el tiempo, lo que hace que el modelo de clasificación actual sea obsoleto y deba ser actualizado. CPL-DS utiliza la divergencia de Kullback-Leibler y el método de bootstrapping para cuantificar y detectar tres tipos posibles de cambio: en las predictoras, en la a posteriori de la clase o en ambas. Después, si se detecta cualquier cambio, un nuevo modelo de clasificación se aprende usando el algoritmo EM; si no, el modelo de clasificación actual se mantiene sin modificaciones. CPL-DS es general, ya que puede ser aplicado a varios modelos de clasificación. Usando dos modelos diferentes, el clasificador naive Bayes y la regresión logística, CPL-DS se ha probado con flujos de datos sintéticos y también se ha aplicado al problema real de la detección de código malware, en el cual los nuevos ficheros recibidos deben ser continuamente clasificados en malware o goodware. Los resultados experimentales muestran que nuestro método es efectivo para la detección de diferentes tipos de cambio a partir de los flujos de datos parcialmente etiquetados y también tiene una buena precisión de la clasificación. Finalmente, la tercera contribución, sobre el problema de clasificación supervisada multidimensional cambiante con el tiempo, consiste en dos métodos adaptativos, a saber, Locally Adpative-MB-MBC (LA-MB-MBC) y Globally Adpative-MB-MBC (GA-MB-MBC). Ambos métodos monitorizan el cambio de concepto a lo largo del tiempo utilizando la log-verosimilitud media como métrica y el test de Page-Hinkley. Luego, si se detecta un cambio de concepto, LA-MB-MBC adapta el actual clasificador Bayesiano multidimensional localmente alrededor de cada nodo cambiado, mientras que GA-MB-MBC aprende un nuevo clasificador Bayesiano multidimensional. El estudio experimental realizado usando flujos de datos sintéticos multidimensionales indica los méritos de los métodos adaptativos propuestos. ABSTRACT Nowadays, with the ongoing and rapid evolution of information technology and computing devices, large volumes of data are continuously collected and stored in different domains and through various real-world applications. Extracting useful knowledge from such a huge amount of data usually cannot be performed manually, and requires the use of adequate machine learning and data mining techniques. Classification is one of the most important techniques that has been successfully applied to several areas. Roughly speaking, classification consists of two main steps: first, learn a classification model or classifier from an available training data, and secondly, classify the new incoming unseen data instances using the learned classifier. Classification is supervised when the whole class values are present in the training data (i.e., fully labeled data), semi-supervised when only some class values are known (i.e., partially labeled data), and unsupervised when the whole class values are missing in the training data (i.e., unlabeled data). In addition, besides this taxonomy, the classification problem can be categorized into uni-dimensional or multi-dimensional depending on the number of class variables, one or more, respectively; or can be also categorized into stationary or streaming depending on the characteristics of the data and the rate of change underlying it. Through this thesis, we deal with the classification problem under three different settings, namely, supervised multi-dimensional stationary classification, semi-supervised unidimensional streaming classification, and supervised multi-dimensional streaming classification. To accomplish this task, we basically used Bayesian network classifiers as models. The first contribution, addressing the supervised multi-dimensional stationary classification problem, consists of two new methods for learning multi-dimensional Bayesian network classifiers from stationary data. They are proposed from two different points of view. The first method, named CB-MBC, is based on a wrapper greedy forward selection approach, while the second one, named MB-MBC, is a filter constraint-based approach based on Markov blankets. Both methods are applied to two important real-world problems, namely, the prediction of the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase and protease inhibitors, and the prediction of the European Quality of Life-5 Dimensions (EQ-5D) from 39-item Parkinson’s Disease Questionnaire (PDQ-39). The experimental study includes comparisons of CB-MBC and MB-MBC against state-of-the-art multi-dimensional classification methods, as well as against commonly used methods for solving the Parkinson’s disease prediction problem, namely, multinomial logistic regression, ordinary least squares, and censored least absolute deviations. For both considered case studies, results are promising in terms of classification accuracy as well as regarding the analysis of the learned MBC graphical structures identifying known and novel interactions among variables. The second contribution, addressing the semi-supervised uni-dimensional streaming classification problem, consists of a novel method (CPL-DS) for classifying partially labeled data streams. Data streams differ from the stationary data sets by their highly rapid generation process and their concept-drifting aspect. That is, the learned concepts and/or the underlying distribution are likely changing and evolving over time, which makes the current classification model out-of-date requiring to be updated. CPL-DS uses the Kullback-Leibler divergence and bootstrapping method to quantify and detect three possible kinds of drift: feature, conditional or dual. Then, if any occurs, a new classification model is learned using the expectation-maximization algorithm; otherwise, the current classification model is kept unchanged. CPL-DS is general as it can be applied to several classification models. Using two different models, namely, naive Bayes classifier and logistic regression, CPL-DS is tested with synthetic data streams and applied to the real-world problem of malware detection, where the new received files should be continuously classified into malware or goodware. Experimental results show that our approach is effective for detecting different kinds of drift from partially labeled data streams, as well as having a good classification performance. Finally, the third contribution, addressing the supervised multi-dimensional streaming classification problem, consists of two adaptive methods, namely, Locally Adaptive-MB-MBC (LA-MB-MBC) and Globally Adaptive-MB-MBC (GA-MB-MBC). Both methods monitor the concept drift over time using the average log-likelihood score and the Page-Hinkley test. Then, if a drift is detected, LA-MB-MBC adapts the current multi-dimensional Bayesian network classifier locally around each changed node, whereas GA-MB-MBC learns a new multi-dimensional Bayesian network classifier from scratch. Experimental study carried out using synthetic multi-dimensional data streams shows the merits of both proposed adaptive methods.