985 resultados para Left ventricular dysfunction
Resumo:
Background-Although assessment of myocardial perfusion by myocardial contrast echocardiography (MCE) is feasible, its incremental benefit to stress echocardiography is not well defined. We examined whether the addition of MCE to combined dipyridamole-exercise echocardiography (DExE) provides incremental benefit for evaluation of coronary artery disease (CAD). Methods and Results-MCE was combined with DExE in 85 patients, 70 of whom were undergoing quantitative coronary angiography and 15 patients with a low probability of CAD. MCE was acquired by low-mechanical-index imaging in 3 apical views after acquisition of standard resting and poststress images. Wall motion, left ventricular opacification, and MCE components of the study were interpreted sequentially, blinded to other data. Significant (>50%) stenoses were present in 43 patients and involved 69 coronary territories. The addition of qualitative MCE improved sensitivity for the detection of CAD (91% versus 74%, P=0.02) and accurate recognition of disease extent (87% versus 65% of territories, P=0.003), with a nonsignificant reduction in specificity. Conclusions-The addition of low-mechanical-index MCE to standard imaging during DExE improves detection of CAD and enables a more accurate determination of disease extent.
Resumo:
Background: Brachial artery reactivity (BAR), carotid intima-media thickness (IMT), and applanation tonometry for evaluation of total arterial compliance may provide information about preclinical vascular disease. We sought to determine whether these tests could be used to identify patients with coronary artery disease (CAD) without being influenced by their ability to identify those at risk ford CAD developing. Methods: We studied 100 patients and compared 3 groups: 35 patients with known CAD; 34 patients with symptoms and risk factors but no CAD identified by stress echocardiography (risk group); and 31 control subjects. BAR and IMT were measured using standard methods, and total arterial compliance was calculated by the pulse-pressure method from simultaneous radial applanation tonometry and pulsed wave Doppler of the left ventricular outflow. Ischemia was identified as a new or worsening wall-motion abnormality induced by stress. Results: In a comparison between the control subjects and patients either at risk for developing CAD or with CAD, the predictors of risk for CAD were: age (P = .01); smoking history (P = .002); hypercholesterolemia (P = .002); and hypertension (P = .004) (model R = 0.82; P = .0001). The independent predictors of CAD were: IMT (P = .001); BAR (P = .04); sex (P = .005); and hypertension (P = .005) (model R = 0.80; P = .0001). Conclusion: IMT, BAR, and traditional cardiovascular risk factors appear to identify patients at risk for CAD developing. However, only IMT was significantly different between patients at risk for developing CAD and those with overt CAD.
Resumo:
Subclinical left ventricular (W) dysfunction may be identified by reduced longitudinal contraction. We sought to define the effects of subclinical LV dysfunction on radial contractility in 53 patients with diabetes mellitus with no LV hypertrophy, normal ejection fraction and no ischaemia as assessed by dobutamine echocardiography, in comparison with age-matched controls. Radial peak myocardial systolic velocity (S-m) and early diastolic velocity (E-m), strain and strain rate were measured in the mid-posterior and mid-anteroseptal walls in parasternal views and each variable was averaged for individual patients (radial contractility). These variables were also measured in the mid-posterior and mid-anteroseptal walls in the apical long-axis view and each variable was averaged for individual patients (longitudinal contractility). Mean radial S-m, strain and strain rate were significantly increased in diabetic patients (2.9+/-0.6 cm/s, 28+/-5% and 1.8+/-0.4 s(-1) respectively) compared with controls (2.4+/-0.7 cm/s, 23+/-4% and 1.6+/-0.3 s(-1) respectively; all P<0.001), but there was no difference in E-m (3.3&PLUSMN;1.2 compared with 3.1&PLUSMN;1.1 cm/s, P=not significant). In contrast, longitudinal S-m, E-m, strain and strain rate were significantly lower in diabetic patients (3.6&PLUSMN;1.1 cm/s, 4.3&PLUSMN;1.6 cm/s, 21&PLUSMN;4% and 1.6&PLUSMN;0.3 s(-1) respectively) than in controls (4.3&PLUSMN;1.0 cm/s, 5.7&PLUSMN;2.3 cm/s, 26&PLUSMN;4% and 1.9&PLUSMN;0.3 s(-1) respectively; all P<0.00 1). Thus radial contractility appears to compensate for reduced longitudinal contractility in subclinical LV dysfunction occurring in the absence of ischaemia or LV hypertrophy.
Resumo:
The assessment of left ventricular (LV) dysfunction has become the most frequent indication for echocardiography, a growth that has been driven by the epidemic of heart failure. The value of echocardiography for assessing LV dysfunction is unquestionable, the quantification of both LV systolic and diastolic dysfunction being a reliable indicator of mortality. 1,2 Nonetheless, whereas the ejection fraction and diastolic assessment are important clinical parameters, they are highly dependent on loading and may produce abnormal results under unusual loading conditions. Moreover, in a number of situations where the LV is evaluated, although the overall function is an important finding, the referring clinician is really requesting an assessment of the nature of the underlying myocardial tissue (Table 1). Indeed, in some situations (eg, among family members of patients with a cardiomyopathy) questions arise about the presence of pathology despite the presence of normal ventricular function. Traditionally, it has been difficult to obtain this information because of the lack of sufficiently sensitive parameters, but a number of new developments have shown such success in this area that the clinical application of tools to assess the myocardium in routine practice appears finally to be a realistic proposition.
Resumo:
OBJECTIVES We sought to assess the prognostic utility of brachial artery reactivity (BAR) in patients at risk of cardiovascular events. BACKGROUND Impaired flow-mediated vasodilation measured by BAR is a marker of endothelial dysfunction. Brachial artery reactivity is influenced by risk factors and is responsive to various pharmacological and other treatments. However, its prognostic importance is uncertain, especially relative to other predictors of outcome. METHODS A total of 444 patients were prospectively enrolled to undergo BAR and follow-up. These patients were at risk of cardiovascular events, based on the presence of risk factors or known or suspected cardiovascular disease. We took a full clinical history, performed BAR, and obtained carotid intima-media thickness (IMT) and left ventricular mass and ejection fraction. Patients were followed up for cardiovascular events and all-cause mortality. Multivariate Cox regression analysis was performed to assess the independent association of investigation variables on outcomes. RESULTS The patients exhibited abnormal BAR (5.2 +/- 6.1% [mean +/- SD]) but showed normal nitrate-mediated dilation (9.9 +/- 7.2%) and normal mean IMT (0.67 +/- 0.12 mm [average]). Forty-nine deaths occurred over the median follow-up period of 24 months (interquartile range 10 to 34). Patients in the lowest tertile group of BAR (<2%) had significantly more events than those in the combined group of highest and mid-tertiles (p = 0.029, log-rank test). However, mean IMT (rather than flow-mediated dilation) was the vascular factor independently associated with mortality, even in the subgroup (n = 271) with no coronary artery disease and low risk. CONCLUSIONS Brachial artery reactivity is lower in patients with events, but is not an independent predictor of cardiovascular outcomes in this cohort of patients. (C) 2004 by the American College of Cardiology Foundation.
Resumo:
Purpose of review Heart failure and diabetes mellitus are frequently associated, and diabetes appears to potentiate the clinical presentation of heart failure related to other causes. The purpose of this review is to examine recent advances in the application of tissue Doppler imaging for the assessment of diabetic heart disease. Recent findings Recent studies have documented that both myocardial systolic and diastolic abnormalities can be identified in apparently healthy patients with diabetes and no overt cardiac dysfunction. Interestingly, these are disturbances of longitudinal function, with compensatory increases of radial function-suggesting primary involvement of the subendocardium, which is a hallmark of myocardial ischemia. Despite this, there is limited evidence that diabetic microangiopathy is responsible-with reduced myocardial blood volume rather than reduced resting flow, and at least some evidence suggesting a normal increment of tissue velocity with stress. Finally, a few correlative studies have shown association of diabetic myocardial disease with poor glycemic control, while angiotensin converting enzyme inhibition may be protective. Summary Tissue Doppler imaging (and the related technique of strain rate imaging) appears to be extremely effective for the identification of subclinical LV dysfunction in diabetic patients It is hoped that the recognition of this condition will prompt specific therapy to prevent the development of overt LV dysfunction.
Resumo:
Serotonin (5-hydroxytryptamine, 5-HT) increases contractile force and elicits arrhythmias through 5-HT4 receptors in porcine and human atrium, but its ventricular effects are unknown. We now report functional 5-HT4 receptors in porcine and human ventricle. 5-HT4 mRNA levels were determined in porcine and human ventricles and contractility studied in ventricular trabeculae. Cyclic AMP-dependent protein kinase (PKA) activity was measured in porcine ventricle. Porcine and human ventricles expressed 5-HT4 receptor mRNA. Ventricular 5-HT4(b) mRNA was increased by four times in 20 failing human hearts compared with five donor hearts. 5-HT increased contractile force maximally by 16% (EC50=890 nM) and PKA activity by 20% of the effects of (-)-isoproterenol (200 muM) in ventricular trabeculae from new-born piglets in the presence of the phosphodiesterase-inhibitor 3-isobutyl-1-methylxanthine. In ventricular trabeculae from adult pigs (3-isobutyl-1-methylxanthine present) 5-HT increased force by 32% (EC50=60 nM) and PKA activity by 39% of (-)-iso-proterenol. In right and left ventricular trabeculae from failing hearts, exposed to modified Krebs solution, 5-HT produced variable increases in contractile force in right ventricular trabeculae from 4 out of 6 hearts and in left ventricular trabeculae from 3 out of 3 hearts- range 1-39% of (-)-isoproterenol, average 8%. In 11 left ventricular trabeculae from the failing hearts of four beta-blocker-treated patients, pre-exposed to a relaxant solution with 0.5 mM Ca2+ and 1.2 mM Mg2+ followed by a switch to 2.5 mM Ca2+ and 1 mM Mg2+, 5-HT (1-100 muM, 3-isobutyl-1-melhylxanthine present) consistently increased contractile force and hastened relaxation by 46% and 25% of (-)-isoproterenol respectively. 5-HT caused arrhythmias in three trabeculae from 3 out of I I patients. In the absence of phosphodiesterase inhibitor, 5-HT increased force in two trabeculae, but not in another six trabeculae from 4 patients. All 5-HT responses were blocked by 5-HT4 receptor antagonists. We conclude that phosphodiesterase inhibition uncovers functional ventricular 5-HT4 receptors, coupled to a PKA pathway, through which 5-HT enhances contractility, hastens relaxation and can potentially cause arrhythmias.
Resumo:
Background. Australia, like other countries, is experiencing an epidemic of heart failure (HF). However, given the lack of national and population-based datasets collating detailed cardiovascular-specific morbidity and mortality outcomes, quantifying the specific burden imposed by HF has been difficult. Methods. Australian Bureau of Statistics (ABS data) for the year 2000 were used in combination with contemporary, well-validated population-based epidemiologic data to estimate the number of individuals with symptomatic and asymptomatic HF related to both preserved (diastolic dysfunction) and impaired left ventricular systolic (dys)function (LVSD) and rates of HF-related hospitalisation. Results. In 2000, we estimate that around 325,000 Australians (58% male) had symptomatic HF associated with both LVSD and diastolic dysfunction and an additional 214,000 with asymptomatic LVSD. 140,000 (26%) live in rural and remote regions, distal to specialist health care services. There was an estimated 22,000 incidents of admissions for congestive heart failure and approximately 100,000 admissions associated with this syndrome overall. Conclusion. Australia is in the midst of a HF epidemic that continues to grow. Overall, it probably contributes to over 1.4 million days of hospitalization at a cost of more than $1 billion. A national response to further quantify and address this enormous health problem is required.
Resumo:
Diastolic dysfunction has a major impact on symptom status, functional capacity, medical treatment, and prognosis in both systolic and diastolic heart failure (HF), irrespective of the cause.w1 w2 When systolic dysfunction is clearly present, the central clinical question concerns the presence or absence of elevated filling pressure; a restrictive filling pattern is highly specific for elevated pulmonary wedge pressure in this setting.1w3 The transmitral flow pattern is also predictive of outcome; non-reversibility of restrictive filling with treatment portends a very poor prognosis.2 Thus, diastolic evaluation is an important component of the evaluation of the patient with systolic left ventricular (LV) impairment.
Resumo:
OBJECTIVE - Type 2 diabetes is associated with reduced exercise capacity, but the cause of this association is unclear. We sought the associations of impaired exercise capacity in type 2 diabetes. RESEARCH DESIGN AND METHODS - Subclinical left ventricular (LV) dysfunction was sought from myocardial strain rate and the basal segmental diastolic velocity (Em) of each wall in 170 patients with type 2 diabetes (aged 56 +/- 10 years, 91 men), good quality echocardiographic images, and negative exercise echocardiograms. The same measurements were made in 56 control subjects (aged 53 +/- 10 years, 29 men). Exercise capacity was calculated in metabolic equivalents, and heart rate recovery (HRR) was measured as the heart rate difference between peak and 1 min after exercise. In subjects with type 2 diabetes, exercise capacity was correlated with clinical, therapeutic, biochemical, and echocardiographic variables, and significant independent associations were sought using a multiple linear regression model. RESULTS - Exercise capacity, strain rate, Em, and HRR were significantly reduced in type 2 diabetes. Exercise capacity was associated with age (r- = -0.37, P < 0.001), male sex (r = 0.26, P = 0.001), BMI (r = -0.19, P = 0.012), HbA(1c) (AlC; r = -0.22, P = 0.009), Em (r = 0.43, P < 0.001), HRR (r = 0.42, P < 0.001), diabetes duration (r = -0.18, P = 0.021), and hypertension history (r = -0.28, P < 0.001). Age (P < 0.001), male sex (P = 0.007), BMI (P = 0.001), Em (P = 0.032), HRR (P = 0.013), and AlC (P = 0.0007) were independent predictors of exercise capacity. CONCLUSIONS - Reduced exercise capacity in patients with type 2 diabetes is associated with diabetes control, subclinical LV dysfunction, and impaired HRR.
Resumo:
Aims/hypothesis: Subclinical left ventricular (LV) dysfunction has been shown by tissue Doppler and strain imaging in diabetic patients in the absence of coronary disease or LV hypertrophy, but the prevalence and aetiology of this finding remain unclear. This study sought to identify the prevalence and the determinants of subclinical diabetic heart disease. Methods: A group of 219 unselected patients with type 2 diabetes without known cardiac disease underwent resting and stress echocardiography. After exclusion of coronary artery disease or LV hypertrophy, the remaining 120 patients ( age 57 +/- 10 years, 73 male) were studied with tissue Doppler imaging. Peak systolic strain of each wall and systolic (Sm) and diastolic ( Em) velocity of each basal segment were measured from the three apical views and averaged for each patient. Significant subclinical LV dysfunction was identified according to Sm and Em normal ranges adjusted by age and sex. Strain and Em were correlated with clinical, therapeutic, echocardiographic and biochemical variables, and significant independent associations were sought using a multiple linear regressionmodel. Results: Significant subclinical LV dysfunction was present in 27% diabetic patients. Myocardial systolic dysfunction by peak strain was independently associated with glycosylated haemoglobin level ( p< 0.001) and lack of angiotensin- converting enzyme inhibitor treatment ( p= 0.003). Myocardial diastolic function ( Em) was independently predicted by age ( p= 0.013), hypertension ( p= 0.001), insulin ( p= 0.008) and metformin ( p= 0.01) treatment. Conclusions/ interpretation: In patients with diabetes mellitus, subclinical LV dysfunction is common and associated with poor diabetic control, advancing age, hypertension and metformin treatment; ACE inhibitor and insulin therapies appear to be protective.
Resumo:
Background The prevalence of left ventricular hypertrophy (LVH), coronary artery disease, and subclinical cardiomyopathy in diabetic patients without known cardiac disease is unclear. We sought the frequency of these findings to determine whether plasma brain natriuretic peptide (BNP) could be used as an alternative screening tool to identify subclinical LV dysfunction. Methods Asymptomatic patients with diabetes mellitus without known cardiac disease (n = 10 1) underwent clinical evaluation, measurement of BNP, exercise stress testing, and detailed echocardiographic assessment. After exclusion of overt dysfunction or ischemia, subclinical myocardial function was sought on the basis of myocardial systolic (Sm) and diastolic velocity (Em). Association was. sought between subclinical dysfunction and clinical, biochemical, exercise, and echocardiographic variables. Results Of 101 patients, 22 had LVH and 16 had ischemia evidenced by exercise-induced wall motion abnormalities. Only 4 patients had abnormal BNP levels; BNP was significantly increased in patients with LVH. After exclusion of LVH and coronary artery disease, subclinical cardiomyopathy was identified in 24 of 66 patients: Subclinical disease could not be predicted by BNP. Conclusions Even after exclusion of asymptomatic ischemia and hypertrophy, subclinical systolic and diastolic dysfunction occurs in a significant number of patients with type 2 diabetes. However, screening approaches, including BNP, do not appear to be sufficiently sensitive to identify subclinical dysfunction, which requires sophisticated echocardiographic analysis.
Resumo:
Cardiac remodeling (hypertrophy and fibrosis) and an increased left ventricular diastolic stiffness characterize models of hypertension such as the SHR and DOCA-salt hypertensive rats. By contrast, hyperthyroidism induces hypertrophy and hypertension, yet collagen expression and deposition is unchanged or decreased, whereas diastolic stiffness is increased. We determined the possible role of increased calcium influx in the development of increased diastolic stiffness in hyperthyroidism by administering verapamil (15 mg/[kg(.)d] orally) to rats given triiodothyronine (T-3) (0.5 mg/[kg.d] subcutaneously for 14 d). Administration of T3 significantly increased body temperature (control: 36.7 +/- 0.2 degrees C; T-3: 39.6 +/- 0.2 degrees C), left ventricular wet weight (control: 2.09 +/- 0.02 mg/kg; T-3 3.07 +/- 0.07 mg/kg), systolic blood pressure (control: 128 +/- 5 mmHg; T-3: 156 +/- 4 mmHg), and left ventricular diastolic stiffness (control: 20.6 +/- 2.0; T-3: 28.8 +/- 1.4). Collagen content of the left ventricle was unchanged. Contractile response to noradrenaline in thoracic aortic rings was reduced. Relaxation in response to acetylcholine (ACh) was also reduced in T-3-treated rats, whereas sodium nitroprusside response was unchanged. Verapamil treatment of hyperthyroid rats completely prevented the increased diastolic stiffness and systolic blood pressure while attenuating the increased body temperature and left ventricular weight; collagen content remained unchanged. ACh response in thoracic aortic rings was restored by verapamil. Thus, in hyperthyroid rats, an increased calcium influx is a potential mediator of the increased diastolic stiffness independent of changes in collagen.
Resumo:
This paper describes a biventricular model, which couples the electrical and mechanical properties of the heart, and computer simulations of ventricular wall motion and deformation by means of a biventricular model. In the constructed electromechanical model, the mechanical analysis was based on composite material theory and the finite-element method; the propagation of electrical excitation was simulated using an electrical heart model, and the resulting active forces were used to calculate ventricular wall motion. Regional deformation and Lagrangian strain tensors were calculated during the systole phase. Displacements, minimum principal strains and torsion angle were used to describe the motion of the two ventricles. The simulations showed that during the period of systole, (1) the right ventricular free wall moves towards the septum, and at the same time, the base and middle of the free wall move towards the apex, which reduces the volume of the right ventricle; the minimum principle strain (E3) is largest at the apex, then at the middle of the free wall and its direction is in the approximate direction of the epicardial muscle fibres; (2) the base and middle of the left ventricular free wall move towards the apex and the apex remains almost static; the torsion angle is largest at the apex; the minimum principle strain E3 is largest at the apex and its direction on the surface of the middle wall of the left ventricle is roughly in the fibre orientation. These results are in good accordance with results obtained from MR tagging images reported in the literature. This study suggests that such an electromechanical biventricular model has the potential to be used to assess the mechanical function of the two ventricles, and also could improve the accuracy ECG simulation when it is used in heart torso model-based body surface potential simulation studies.
Resumo:
Background: Few studies have examined the potential benefits of specialist nurse-led programs of care involving home and clinic-based follow-up to optimise the post-discharge management of chronic heart failure (CHF). Objective: To determine the effectiveness of a hybrid program of clinic plus home-based intervention (C+HBI) in reducing recurrent hospitalisation in CHF patients. Methods: CHF patients with evidence of left ventricular systolic dysfunction admitted to two hospitals in Northern England were assigned to a C+HBI lasting 6 months post-discharge (n=58) or to usual, post-discharge care (UC: n=48) via a cluster randomization protocol. The co-primary endpoints were death or unplanned readmission (event-free survival) and rate of recurrent, all-cause readmission within 6 months of hospital discharge. Results: During study follow-up, more UC patients had an unplanned readmission for any cause (44% vs. 22%: P=0.0191 OR 1.95 95% CI 1.10-3.48) whilst 7 (15%) versus 5 (9%) UC and C+HBI patients, respectively, died (P=NS). Overall, 15 (26%) C+HBI versus 21 (44%) UC patients experienced a primary endpoint. C+HBI was associated with a non-significant, 45% reduction in the risk of death or readmission when adjusting for potential confounders (RR 0.55, 95% CI 0.28-1.08: P=0.08). Overall, C+HBI patients accumulated significantly fewer unplanned readmissions (15 vs. 45: P