1000 resultados para Lattice construction
Resumo:
The problem of intrusion detection and location identification in the presence of clutter is considered for a hexagonal sensor-node geometry. It is noted that in any practical application,for a given fixed intruder or clutter location, only a small number of neighboring sensor nodes will register a significant reading. Thus sensing may be regarded as a local phenomenon and performance is strongly dependent on the local geometry of the sensor nodes. We focus on the case when the sensor nodes form a hexagonal lattice. The optimality of the hexagonal lattice with respect to density of packing and covering and largeness of the kissing number suggest that this is the best possible arrangement from a sensor network viewpoint. The results presented here are clearly relevant when the particular sensing application permits a deterministic placement of sensors. The results also serve as a performance benchmark for the case of a random deployment of sensors. A novel feature of our analysis of the hexagonal sensor grid is a signal-space viewpoint which sheds light on achievable performance.Under this viewpoint, the problem of intruder detection is reduced to one of determining in a distributed manner, the optimal decision boundary that separates the signal spaces SI and SC associated to intruder and clutter respectively. Given the difficulty of implementing the optimal detector, we present a low-complexity distributive algorithm under which the surfaces SI and SC are separated by a wellchosen hyperplane. The algorithm is designed to be efficient in terms of communication cost by minimizing the expected number of bits transmitted by a sensor.
Resumo:
We present a fast algorithm for computing a Gomory-Hu tree or cut tree for an unweighted undirected graph G = (V,E). The expected running time of our algorithm is Õ(mc) where |E| = m and c is the maximum u-vedge connectivity, where u,v ∈ V. When the input graph is also simple (i.e., it has no parallel edges), then the u-v edge connectivity for each pair of vertices u and v is at most n-1; so the expected running time of our algorithm for simple unweighted graphs is Õ(mn).All the algorithms currently known for constructing a Gomory-Hu tree [8,9] use n-1 minimum s-t cut (i.e., max flow) subroutines. This in conjunction with the current fastest Õ(n20/9) max flow algorithm due to Karger and Levine [11] yields the current best running time of Õ(n20/9n) for Gomory-Hu tree construction on simpleunweighted graphs with m edges and n vertices. Thus we present the first Õ(mn) algorithm for constructing a Gomory-Hu tree for simple unweighted graphs.We do not use a max flow subroutine here; we present an efficient tree packing algorithm for computing Steiner edge connectivity and use this algorithm as our main subroutine. The advantage in using a tree packing algorithm for constructing a Gomory-Hu tree is that the work done in computing a minimum Steiner cut for a Steiner set S ⊆ V can be reused for computing a minimum Steiner cut for certain Steiner sets S' ⊆ S.
Resumo:
Regenerating codes are a class of distributed storage codes that allow for efficient repair of failed nodes, as compared to traditional erasure codes. An [n, k, d] regenerating code permits the data to be recovered by connecting to any k of the n nodes in the network, while requiring that a failed node be repaired by connecting to any d nodes. The amount of data downloaded for repair is typically much smaller than the size of the source data. Previous constructions of exact-regenerating codes have been confined to the case n = d + 1. In this paper, we present optimal, explicit constructions of (a) Minimum Bandwidth Regenerating (MBR) codes for all values of [n, k, d] and (b) Minimum Storage Regenerating (MSR) codes for all [n, k, d >= 2k - 2], using a new product-matrix framework. The product-matrix framework is also shown to significantly simplify system operation. To the best of our knowledge, these are the first constructions of exact-regenerating codes that allow the number n of nodes in the network, to be chosen independent of the other parameters. The paper also contains a simpler description, in the product-matrix framework, of a previously constructed MSR code with [n = d + 1, k, d >= 2k - 1].
Resumo:
Electronic states of CeO(2), Ce(1 -aEuro parts per thousand x) Pt (x) O(2 -aEuro parts per thousand delta) , and Ce(1 -aEuro parts per thousand x -aEuro parts per thousand y) Ti (y) Pt (x) O(2 -aEuro parts per thousand delta) electrodes have been investigated by X-ray photoelectron spectroscopy as a function of applied potential for oxygen evolution and formic acid and methanol oxidation. Ionically dispersed platinum in Ce(1 -aEuro parts per thousand x) Pt (x) O(2 -aEuro parts per thousand delta) and Ce(1 -aEuro parts per thousand x -aEuro parts per thousand y) Ti (y) Pt (x) O(2 -aEuro parts per thousand delta) is active toward these reactions compared with CeO(2) alone. Higher electrocatalytic activity of Pt(2+) ions in CeO(2) and Ce(1 -aEuro parts per thousand x) Ti (x) O(2) compared with the same amount of Pt(0) in Pt/C is attributed to Pt(2+) ion interaction with CeO(2) and Ce(1 -aEuro parts per thousand x) Ti (x) O(2) to activate the lattice oxygen of the support oxide. Utilization of this activated lattice oxygen has been demonstrated in terms of high oxygen evolution in acid medium with these catalysts. Further, ionic platinum in CeO(2) and Ce(1 -aEuro parts per thousand x) Ti (x) O(2) does not suffer from CO poisoning effect unlike Pt(0) in Pt/C due to participation of activated lattice oxygen which oxidizes the intermediate CO to CO(2). Hence, higher activity is observed toward formic acid and methanol oxidation compared with same amount of Pt metal in Pt/C.
Resumo:
The Reeb graph of a scalar function represents the evolution of the topology of its level sets. This paper describes a near-optimal output-sensitive algorithm for computing the Reeb graph of scalar functions defined over manifolds or non-manifolds in any dimension. Key to the simplicity and efficiency of the algorithm is an alternate definition of the Reeb graph that considers equivalence classes of level sets instead of individual level sets. The algorithm works in two steps. The first step locates all critical points of the function in the domain. Critical points correspond to nodes in the Reeb graph. Arcs connecting the nodes are computed in the second step by a simple search procedure that works on a small subset of the domain that corresponds to a pair of critical points. The paper also describes a scheme for controlled simplification of the Reeb graph and two different graph layout schemes that help in the effective presentation of Reeb graphs for visual analysis of scalar fields. Finally, the Reeb graph is employed in four different applications-surface segmentation, spatially-aware transfer function design, visualization of interval volumes, and interactive exploration of time-varying data.
Resumo:
In this second part of a two part series of papers, we construct a new class of Space-Time Block Codes (STBCs) for point-to-point MIMO channel and Distributed STBCs (DSTBCs) for the amplify-and-forward relay channel that give full-diversity with Partial Interference Cancellation (PIC) and PIC with Successive Interference Cancellation (PIC-SIC) decoders. The proposed class of STBCs include most of the known full-diversity low complexity PIC/PIC-SIC decodable STBCs as special cases. We also show that a number of known full-diversity PIC/PIC-SIC decodable STBCs that were constructed for the point-topoint MIMO channel can be used as full-diversity PIC/PIC-SIC decodable DSTBCs in relay networks. For the same decoding complexity, the proposed STBCs and DSTBCs achieve higher rates than the known low decoding complexity codes. Simulation results show that the new codes have a better bit error rate performance than the low ML decoding complexity codes available in the literature.
Resumo:
In the present study singular fractal functions (SFF) were used to generate stress-strain plots for quasibrittle material like concrete and cement mortar and subsequently stress-strain plot of cement mortar obtained using SFF was used for modeling fracture process in concrete. The fracture surface of concrete is rough and irregular. The fracture surface of concrete is affected by the concrete's microstructure that is influenced by water cement ratio, grade of cement and type of aggregate 11-41. Also the macrostructural properties such as the size and shape of the specimen, the initial notch length and the rate of loading contribute to the shape of the fracture surface of concrete. It is known that concrete is a heterogeneous and quasi-brittle material containing micro-defects and its mechanical properties strongly relate to the presence of micro-pores and micro-cracks in concrete 11-41. The damage in concrete is believed to be mainly due to initiation and development of micro-defects with irregularity and fractal characteristics. However, repeated observations at various magnifications also reveal a variety of additional structures that fall between the `micro' and the `macro' and have not yet been described satisfactorily in a systematic manner [1-11,15-17]. The concept of singular fractal functions by Mosolov was used to generate stress-strain plot of cement concrete, cement mortar and subsequently the stress-strain plot of cement mortar was used in two-dimensional lattice model [28]. A two-dimensional lattice model was used to study concrete fracture by considering softening of matrix (cement mortar). The results obtained from simulations with lattice model show softening behavior of concrete and fairly agrees with the experimental results. The number of fractured elements are compared with the acoustic emission (AE) hits. The trend in the cumulative fractured beam elements in the lattice fracture simulation reasonably reflected the trend in the recorded AE measurements. In other words, the pattern in which AE hits were distributed around the notch has the same trend as that of the fractured elements around the notch which is in support of lattice model. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The diversity order and coding gain are crucial for the performance of a multiple antenna communication system. It is known that space-time trellis codes (STTC) can be used to achieve these objectives. In particular, we can use STTCs to obtain large coding gains. Many attempts have been made to construct STTCs which achieve full-diversity and good coding gains, though a general method of construction does not exist. Delay diversity code (rate-1) is known to achieve full-diversity, for any number of transmit antennas and any signal set, but does not give a good coding gain. A product distance code based delay diversity scheme (Tarokh, V. et al., IEEE Trans. Inform. Theory, vol.44, p.744-65, 1998) enables one to improve the coding gain and construct STTCs for any given number of states using coding in conjunction with delay diversity; it was stated as an open problem. We achieve such a construction. We assume a shift register based model to construct an STTC for any state complexity. We derive a sufficient condition for this STTC to achieve full-diversity, based on the delay diversity scheme. This condition provides a framework to do coding in conjunction with delay diversity for any signal constellation. Using this condition, we provide a formal rate-1 STTC construction scheme for PSK signal sets, for any number of transmit antennas and any given number of states, which achieves full-diversity and gives a good coding gain.
Resumo:
A major challenge in wireless communications is overcoming the deleterious effects of fading, a phenomenon largely responsible for the seemingly inevitable dropped call. Multiple-antennas communication systems, commonly referred to as MIMO systems, employ multiple antennas at both transmitter and receiver, thereby creating a multitude of signalling pathways between transmitter and receiver. These multiple pathways give the signal a diversity advantage with which to combat fading. Apart from helping overcome the effects of fading, MIMO systems can also be shown to provide a manyfold increase in the amount of information that can be transmitted from transmitter to receiver. Not surprisingly,MIMO has played, and continues to play, a key role in the advancement of wireless communication.Space-time codes are a reference to a signalling format in which information about the message is dispersed across both the spatial (or antenna) and time dimension. Algebraic techniques drawing from algebraic structures such as rings, fields and algebras, have been extensively employed in the construction of optimal space-time codes that enable the potential of MIMO communication to be realized, some of which have found their way into the IEEE wireless communication standards. In this tutorial article, reflecting the authors’interests in this area, we survey some of these techniques.