839 resultados para Integrated systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water systems in the Sultanate of Oman are inevitably exposed to varied threats and hazards due to both natural and man-made hazards. Natural disasters, especially tropical cyclone Gonu in 2007, cause immense damage to water supply systems in Oman. At the same time water loss from leaks is a major operational problem. This research developed an integrated approach to identify and rank the risks to the water sources, transmission pipelines and distribution networks in Oman and suggests appropriate mitigation measures. The system resilience was evaluated and an emergency response plan for the water supplies developed. The methodology involved mining the data held by the water supply utility for risk and resilience determination and operational data to support calculations of non-revenue water. Risk factors were identified, ranked and scored at a stakeholder workshop and the operational information required was principally gathered from interviews. Finally, an emergency response plan was developed by evaluating the risk and resilience factors. The risk analysis and assessment used a Coarse Risk Analysis (CRA) approach and risk scores were generated using a simple risk matrix based on WHO recommendations. The likelihoods and consequences of a wide range of hazardous events were identified through a key workshop and subsequent questionnaires. The thesis proposes a method of translating the detailed risk evaluations into resilience scores through a methodology used in transportation networks. A water audit indicated that the percentage of NRW in Oman is greater than 35% which is similar to other Gulf countries but high internationally. The principal strategy for managing NRW used in the research was the AWWA water audit method which includes free to use software and was found to be easy to apply in Oman. The research showed that risks to the main desalination processes can be controlled but the risk due to feed water quality might remain high even after implementing mitigation measures because the intake is close to an oil port with a significant risk of oil contamination and algal blooms. The most severe risks to transmission mains were found to be associated with pipe rather than pump failure. The systems in Oman were found to be moderately resilient, the resilience of desalination plants reasonably high but the transmission mains and pumping stations are very vulnerable. The integrated strategy developed in this study has a wide applicability, particularly in the Gulf area, which may have risks from exceptional events and will be experiencing NRW. Other developing countries may also experience such risks but with different magnitudes and the risk evaluation tables could provide a useful format for further work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Contemporary integrated circuits are designed and manufactured in a globalized environment leading to concerns of piracy, overproduction and counterfeiting. One class of techniques to combat these threats is circuit obfuscation which seeks to modify the gate-level (or structural) description of a circuit without affecting its functionality in order to increase the complexity and cost of reverse engineering. Most of the existing circuit obfuscation methods are based on the insertion of additional logic (called “key gates”) or camouflaging existing gates in order to make it difficult for a malicious user to get the complete layout information without extensive computations to determine key-gate values. However, when the netlist or the circuit layout, although camouflaged, is available to the attacker, he/she can use advanced logic analysis and circuit simulation tools and Boolean SAT solvers to reveal the unknown gate-level information without exhaustively trying all the input vectors, thus bringing down the complexity of reverse engineering. To counter this problem, some ‘provably secure’ logic encryption algorithms that emphasize methodical selection of camouflaged gates have been proposed previously in literature [1,2,3]. The contribution of this paper is the creation and simulation of a new layout obfuscation method that uses don't care conditions. We also present proof-of-concept of a new functional or logic obfuscation technique that not only conceals, but modifies the circuit functionality in addition to the gate-level description, and can be implemented automatically during the design process. Our layout obfuscation technique utilizes don’t care conditions (namely, Observability and Satisfiability Don’t Cares) inherent in the circuit to camouflage selected gates and modify sub-circuit functionality while meeting the overall circuit specification. Here, camouflaging or obfuscating a gate means replacing the candidate gate by a 4X1 Multiplexer which can be configured to perform all possible 2-input/ 1-output functions as proposed by Bao et al. [4]. It is important to emphasize that our approach not only obfuscates but alters sub-circuit level functionality in an attempt to make IP piracy difficult. The choice of gates to obfuscate determines the effort required to reverse engineer or brute force the design. As such, we propose a method of camouflaged gate selection based on the intersection of output logic cones. By choosing these candidate gates methodically, the complexity of reverse engineering can be made exponential, thus making it computationally very expensive to determine the true circuit functionality. We propose several heuristic algorithms to maximize the RE complexity based on don’t care based obfuscation and methodical gate selection. Thus, the goal of protecting the design IP from malicious end-users is achieved. It also makes it significantly harder for rogue elements in the supply chain to use, copy or replicate the same design with a different logic. We analyze the reverse engineering complexity by applying our obfuscation algorithm on ISCAS-85 benchmarks. Our experimental results indicate that significant reverse engineering complexity can be achieved at minimal design overhead (average area overhead for the proposed layout obfuscation methods is 5.51% and average delay overhead is about 7.732%). We discuss the strengths and limitations of our approach and suggest directions that may lead to improved logic encryption algorithms in the future. References: [1] R. Chakraborty and S. Bhunia, “HARPOON: An Obfuscation-Based SoC Design Methodology for Hardware Protection,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 28, no. 10, pp. 1493–1502, 2009. [2] J. A. Roy, F. Koushanfar, and I. L. Markov, “EPIC: Ending Piracy of Integrated Circuits,” in 2008 Design, Automation and Test in Europe, 2008, pp. 1069–1074. [3] J. Rajendran, M. Sam, O. Sinanoglu, and R. Karri, “Security Analysis of Integrated Circuit Camouflaging,” ACM Conference on Computer Communications and Security, 2013. [4] Bao Liu, Wang, B., "Embedded reconfigurable logic for ASIC design obfuscation against supply chain attacks,"Design, Automation and Test in Europe Conference and Exhibition (DATE), 2014 , vol., no., pp.1,6, 24-28 March 2014.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Resource management policies are frequently designed and planned to target specific needs of particular sectors, without taking into account the interests of other sectors who share the same resources. In a climate of resource depletion, population growth, increase in energy demand and climate change awareness, it is of great importance to promote the assessment of intersectoral linkages and, by doing so, understand their effects and implications. This need is further augmented when common use of resources might not be solely relevant at national level, but also when the distribution of resources ranges over different nations. This dissertation focuses on the study of the energy systems of five south eastern European countries, which share the Sava River Basin, using a water-food(agriculture)-energy nexus approach. In the case of the electricity generation sector, the use of water is essential for the integrity of the energy systems, as the electricity production in the riparian countries relies on two major technologies dependent on water resources: hydro and thermal power plants. For example, in 2012, an average of 37% of the electricity production in the SRB countries was generated by hydropower and 61% in thermal power plants. Focusing on the SRB, in terms of existing installed capacities, the basin accommodates close to a tenth of all hydropower capacity while providing water for cooling to 42% of the net capacity of thermal power currently in operation in the basin. This energy-oriented nexus study explores the dependency on the basin’s water resources of the energy systems in the region for the period between 2015 and 2030. To do so, a multi-country electricity model was developed to provide a quantification ground to the analysis, using the open-source software modelling tool OSeMOSYS. Three main areas are subject to analysis: first, the impact of energy efficiency and renewable energy strategies in the electricity generation mix; secondly, the potential impacts of climate change under a moderate climate change projection scenario; and finally, deriving from the latter point, the cumulative impact of an increase in water demand in the agriculture sector, for irrigation. Additionally, electricity trade dynamics are compared across the different scenarios under scrutiny, as an effort to investigate the implications of the aforementioned factors in the electricity markets in the region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New morpho-bathymetric and tectono-stratigraphic data on Naples and Salerno Gulfs, derived from bathymetric and seismic data analysis and integrated geologic interpretation are here presented. The CUBE(Combined Uncertainty Bathymetric Estimator) method has been applied to complex morphologies, such as the Capri continental slope and the related geological structures occurring in the Salerno Gulf.The bathymetric data analysis has been carried out for marine geological maps of the whole Campania continental margin at scales ranging from 1:25.000 to 1:10.000, including focused examples in Naples and Salerno Gulfs, Naples harbour, Capri and Ischia Islands and Salerno Valley. Seismic data analysis has allowed for the correlation of main morpho-structural lineaments recognized at a regional scale through multichannel profiles with morphological features cropping out at the sea bottom, evident from bathymetry.Main fault systems in the area have been represented on a tectonic sketch map, including the master fault located northwards to the Salerno Valley half graben. Some normal faults parallel to the master fault have been interpreted from the slope map derived from bathymetric data. A complex system of antithetic faults bound two morpho-structural highs located 20km to the south of the Capri Island. Some hints of compressional reactivation of normal faults in an extensional setting involving the whole Campania continental margin have been shown from seismic interpretation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The CQ Cotton Regional Extension project has been a key to the delivery of emerging, cutting edge research information and knowledge to the Central Queensland cotton industry. The direct relevance of southern research to cotton production under the conditions experienced in CQ always has been an issue which could be addressed through regional assessment and adaptation. The project links the national research to the region through development and extension, with a strong focus on the major industry production issues including but not limited to disease, Integrated Pest Management (IPM), soils, nutrition and integrated weed management. Susan Mass has supported the implementation of national industry-wide programs particularly the industry Best Management Practices program (myBMP). This project has successfully transitioned to a focus on delivering national outcomes in target lead areas as part of National Development and Delivery Team established by Cotton CRC, CRDC and Cotton Australia, while maintaining a regional extension presence for Central Queensland cotton & grain farming systems. Susan Mass has very effectively merged and integrated strong regional extension support to cotton growers in Central Queensland with delivery of industry extension priorities across the entire industry in the Development and Delivery Team model. Susan is the target lead for disease and farm hygiene. Recognising the challenges of having regionally relevant research in Central Queensland, this project has facilitated locally based research including boll rot, Bt cotton resistance management, and mealybug biology through strong collaborations. This collaborative approach has included linkage to Department of Environment and Resource Managmeent (DERM) groups and myBMP programs resulting in a high uptake in CQ.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Virus and soil borne pathogens negatively impact on the production of potatoes in tropical highland and sub-tropical environments, limiting supply of an increasingly popular and important vegetable in these regions. It is common for latent disease infected seed tubers or field grown cuttings to be used as potato planting material. We utilised an International Potato Centre technique, using aeroponic technology, to produce low cost mini-tubers in tropical areas. The system has been optimised for increased effectiveness in tropical areas. High numbers of seed tubers of cultivar Sebago (630) and Nicola per m2 (>900) were obtained in the first generation, and the system is capable of producing five crops of standard cultivars in every two years. Initial results indicate that quality seed could be produced by nurseries and farmers, therefore contributing to the minimisation of soil borne diseases in an integrated management plan. This technology reduces seed production costs, benefiting seed and potato growers. © ISHS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Virtual-Build-to-Order (VBTO) is an emerging order fulfilment system within the automotive sector that is intended to improve fulfilment performance by taking advantage of integrated information systems. The primary innovation in VBTO systems is the ability to make available all unsold products that are in the production pipeline to all customers. In a conventional system the pipeline is inaccessible and a customer can be fulfilled by a product from stock or having a product Built-to-Order (BTO), whereas in a VBTO system a customer can be fulfilled by a product from stock, by being allocated a product in the pipeline, or by a build-to-order product. Simulation is used to investigate and profile the fundamental behaviour of the basic VBTO system and to compare it to a Conventional system. A predictive relationship is identified, between the proportions of customers fulfilled through each mechanism and the ratio of product variety / pipeline length. The simulations reveal that a VBTO system exhibits inherent behaviour that alters the stock mix and levels, leading to stock levels being higher than in an equivalent conventional system at certain variety / pipeline ratios. The results have implications for the design and management of order fulfilment systems in sectors such as automotive where VBTO is a viable operational model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Miniaturization of power generators to the MEMS scale, based on the hydrogen-air fuel cell, is the object of this research. The micro fuel cell approach has been adopted for advantages of both high power and energy densities. On-board hydrogen production/storage and an efficient control scheme that facilitates integration with a fuel cell membrane electrode assembly (MEA) are key elements for micro energy conversion. Millimeter-scale reactors (ca. 10 µL) have been developed, for hydrogen production through hydrolysis of CaH2 and LiAlH4, to yield volumetric energy densities of the order of 200 Whr/L. Passive microfluidic control schemes have been implemented in order to facilitate delivery, self-regulation, and at the same time eliminate bulky auxiliaries that run on parasitic power. One technique uses surface tension to pump water in a microchannel for hydrolysis and is self-regulated, based on load, by back pressure from accumulated hydrogen acting on a gas-liquid microvalve. This control scheme improves uniformity of power delivery during long periods of lower power demand, with fast switching to mass transport regime on the order of seconds, thus providing peak power density of up to 391.85 W/L. Another method takes advantage of water recovery by backward transport through the MEA, of water vapor that is generated at the cathode half-cell reaction. This regulation-free scheme increases available reactor volume to yield energy density of 313 Whr/L, and provides peak power density of 104 W/L. Prototype devices have been tested for a range of duty periods from 2-24 hours, with multiple switching of power demand in order to establish operation across multiple regimes. Issues identified as critical to the realization of the integrated power MEMS include effects of water transport and byproduct hydrate swelling on hydrogen production in the micro reactor, and ambient relative humidity on fuel cell performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The WorldFish Center has been collaborating with its partners (AWF and WWF) in the Maringa-Lopori-Wamba (MLW) and the Lac Tele-Lac Ntomba (LTL) Landscapes to develop participatory monitoring systems for aquatic ecosystems. This requires rigorous data collection regarding fishing effort and catch, and the establishment of community partnerships; enabling WorldFish Center researchers to understand and counteract the institutional legacies of previous NGO interventions. In the MLW, fisherfolk livelihoods are severely limited due to their extreme isolation from markets and government services. However, fisherfolk have some experience dealing with natural resource conservation or extraction entities as well as humanitarian agencies. Their history has left them slightly skeptical but reasonably willing to collaborate with incoming NGOs. Around Lac Ntomba, fisherfolk have had more extensive interactions with conservation and humanitarian NGOs, but despite their proximity to the Congo River, they appear to have very limited access to distant markets. As past benefits from NGO activities have been captured by local village elites many fishers are highly skeptical and even antagonistic toward NGOs in general, and see little benefits from collaborating with each other or NGOs. Similarly to the MLW and Lac Ntomba, Lac Maï-Ndombe fisherfolk were disillusioned by past NGO activities. However, in this area levels of fish catch are greater than in the other watersheds, and many fishers make regular trips to major markets in Kinshasa, Kikwit and Tchikapa. Consequently, while there are significant divisions to be addressed in Lac Maï-Ndombe, fisherfolk in general are more interested in exploring options for improving livelihoods. In order to overcome these hurdles, the WorldFish Center has introduced an integrated research-extension approach in its interactions with these communities. The teams conducted demonstrations of technological innovations that could significantly improve on present post-harvest fish processing practices, in particular: a solar fish drying tent and a fish smoking barrel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dynamically reconfigurable hardware is a promising technology that combines in the same device both the high performance and the flexibility that many recent applications demand. However, one of its main drawbacks is the reconfiguration overhead, which involves important delays in the task execution, usually in the order of hundreds of milliseconds, as well as high energy consumption. One of the most powerful ways to tackle this problem is configuration reuse, since reusing a task does not involve any reconfiguration overhead. In this paper we propose a configuration replacement policy for reconfigurable systems that maximizes task reuse in highly dynamic environments. We have integrated this policy in an external taskgraph execution manager that applies task prefetch by loading and executing the tasks as soon as possible (ASAP). However, we have also modified this ASAP technique in order to make the replacements more flexible, by taking into account the mobility of the tasks and delaying some of the reconfigurations. In addition, this replacement policy is a hybrid design-time/run-time approach, which performs the bulk of the computations at design time in order to save run-time computations. Our results illustrate that the proposed strategy outperforms other state-ofthe-art replacement policies in terms of reuse rates and achieves near-optimal reconfiguration overhead reductions. In addition, by performing the bulk of the computations at design time, we reduce the execution time of the replacement technique by 10 times with respect to an equivalent purely run-time one.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biofilms are the primary cause of clinical bacterial infections and are impervious to typical amounts of antibiotics, necessitating very high doses for treatment. Therefore, it is highly desirable to develop new alternate methods of treatment that can complement or replace existing approaches using significantly lower doses of antibiotics. Current standards for studying biofilms are based on end-point studies that are invasive and destroy the biofilm during characterization. This dissertation presents the development of a novel real-time sensing and treatment technology to aid in the non-invasive characterization, monitoring and treatment of bacterial biofilms. The technology is demonstrated through the use of a high-throughput bifurcation based microfluidic reactor that enables simulation of flow conditions similar to indwelling medical devices. The integrated microsystem developed in this work incorporates the advantages of previous in vitro platforms while attempting to overcome some of their limitations. Biofilm formation is extremely sensitive to various growth parameters that cause large variability in biofilms between repeated experiments. In this work we investigate the use of microfluidic bifurcations for the reduction in biofilm growth variance. The microfluidic flow cell designed here spatially sections a single biofilm into multiple channels using microfluidic flow bifurcation. Biofilms grown in the bifurcated device were evaluated and verified for reduced biofilm growth variance using standard techniques like confocal microscopy. This uniformity in biofilm growth allows for reliable comparison and evaluation of new treatments with integrated controls on a single device. Biofilm partitioning was demonstrated using the bifurcation device by exposing three of the four channels to various treatments. We studied a novel bacterial biofilm treatment independent of traditional antibiotics using only small molecule inhibitors of bacterial quorum sensing (analogs) in combination with low electric fields. Studies using the bifurcation-based microfluidic flow cell integrated with real-time transduction methods and macro-scale end-point testing of the combination treatment showed a significant decrease in biomass compared to the untreated controls and well-known treatments such as antibiotics. To understand the possible mechanism of action of electric field-based treatments, fundamental treatment efficacy studies focusing on the effect of the energy of the applied electrical signal were performed. It was shown that the total energy and not the type of the applied electrical signal affects the effectiveness of the treatment. The linear dependence of the treatment efficacy on the applied electrical energy was also demonstrated. The integrated bifurcation-based microfluidic platform is the first microsystem that enables biofilm growth with reduced variance, as well as continuous real-time threshold-activated feedback monitoring and treatment using low electric fields. The sensors detect biofilm growth by monitoring the change in impedance across the interdigitated electrodes. Using the measured impedance change and user inputs provided through a convenient and simple graphical interface, a custom-built MATLAB control module intelligently switches the system into and out of treatment mode. Using this self-governing microsystem, in situ biofilm treatment based on the principles of the bioelectric effect was demonstrated by exposing two of the channels of the integrated bifurcation device to low doses of antibiotics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Part 5: Service Orientation in Collaborative Networks

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Part 4: Transition Towards Product-Service Systems

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Part 4: Transition Towards Product-Service Systems