986 resultados para ION COMPLEXES
Resumo:
This doctoral thesis is about the solar wind influence on the atmosphere of the planet Venus. A numerical plasma simulation model was developed for the interaction between Venus and the solar wind to study the erosion of charged particles from the Venus upper atmosphere. The developed model is a hybrid simulation where ions are treated as particles and electrons are modelled as a fluid. The simulation was used to study the solar wind induced ion escape from Venus as observed by the European Space Agency's Venus Express and NASA's Pioneer Venus Orbiter spacecraft. Especially, observations made by the ASPERA-4 particle instrument onboard Venus Express were studied. The thesis consists of an introductory part and four peer-reviewed articles published in scientific journals. In the introduction Venus is presented as one of the terrestrial planets in the Solar System and the main findings of the work are discussed within the wider context of planetary physics. Venus is the closest neighbouring planet to the Earth and the most earthlike planet in its size and mass orbiting the Sun. Whereas the atmosphere of the Earth consists mainly of nitrogen and oxygen, Venus has a hot carbon dioxide atmosphere, which is dominated by the greenhouse effect. Venus has all of its water in the atmosphere, which is only a fraction of the Earth's total water supply. Since planets developed presumably in similar conditions in the young Solar System, why Venus and Earth became so different in many respects? One important feature of Venus is that the planet does not have an intrinsic magnetic field. This makes it possible for the solar wind, a continuous stream of charged particles from the Sun, to flow close to Venus and to pick up ions from the planet's upper atmosphere. The strong intrinsic magnetic field of the Earth dominates the terrestrial magnetosphere and deflects the solar wind flow far away from the atmosphere. The region around Venus where the planet's atmosphere interacts with the solar wind is called the plasma environment or the induced magnetosphere. Main findings of the work include new knowledge about the movement of escaping planetary ions in the Venusian induced magnetosphere. Further, the developed simulation model was used to study how the solar wind conditions affect the ion escape from Venus. Especially, the global three-dimensional structure of the Venusian particle and magnetic environment was studied. The results help to interpret spacecraft observations around the planet. Finally, several remaining questions were identified, which could potentially improve our knowledge of the Venus ion escape and guide the future development of planetary plasma simulations.
Resumo:
New protonated layered oxides, HMWO6·1.5H2O (M=Nb or Ta), have been synthesized by topotactic exchange of lithium in trirutile LiMWO6 with protons by treatment with dilute HNO3. The tetragonal cell constants are a=4.71 (2) and c=25.70 (8)Å for HNbWO6·1.5H2O and a=4.70 (2) and c=25.75 (9) Å for HTaWO6·1.5H2O. Partially hydrated compounds, HMWO6·0.5H2O and anhydrous compounds, HMWO6 retain the layered structure. The structure of these oxides consists of MWO6 sheets built up of M/W-oxygen octahedra with rutile type corner- and edge-sharing. Interlayer protons in HMWO6 are exchanged with Li+, Na+, K+ and Tl+. HMWO6 exhibit Brønsted acidity intercalating n-alkylamines and pyridine.
Resumo:
A novel chelate exchange reaction, leading to the formation of a series of N-alkyl substituent dependent mixed ligand isomeric complexes of the type Ni(R-AB)(AC') and Ni(R-AC)(AB') (Figure 1) are discussed. Here, AB and AC denote two different N-bonded isonitroso-β-keto-imino ligand moieties, while AB' and AC' are the corresponding O-bonded ligand moieties and R is an N-alkyl substituent. The isomeric complexes are suggested to be monomeric, neutral and diamagnetic with an asymmetric square planar geometry. The bonding isomerism of the isonitroso group in these complexes is discussed on the basis of the infrared and proton magnetic resonance spectral studies. A probable mechanism for the preparative route is also proposed.
Resumo:
Aerosol particles play an important role in the Earth s atmosphere and in the climate system: they scatter and absorb solar radiation, facilitate chemical processes, and serve as seeds for cloud formation. Secondary new particle formation (NPF) is a globally important source of these particles. Currently, the mechanisms of particle formation and the vapors participating in this process are, however, not truly understood. In order to fully explain atmospheric NPF and subsequent growth, we need to measure directly the very initial steps of the formation processes. This thesis investigates the possibility to study atmospheric particle formation using a recently developed Neutral cluster and Air Ion Spectrometer (NAIS). First, the NAIS was calibrated and intercompared, and found to be in good agreement with the reference instruments both in the laboratory and in the field. It was concluded that NAIS can be reliably used to measure small atmospheric ions and particles directly at the sizes where NPF begins. Second, several NAIS systems were deployed simultaneously at 12 European measurement sites to quantify the spatial and temporal distribution of particle formation events. The sites represented a variety of geographical and atmospheric conditions. The NPF events were detected using NAIS systems at all of the sites during the year-long measurement period. Various particle formation characteristics, such as formation and growth rates, were used as indicators of the relevant processes and participating compounds in the initial formation. In a case of parallel ion and neutral cluster measurements, we also estimated the relative contribution of ion-induced and neutral nucleation to the total particle formation. At most sites, the particle growth rate increased with the increasing particle size indicating that different condensing vapors are participating in the growth of different-sized particles. The results suggest that, in addition to sulfuric acid, organic vapors contribute to the initial steps of NPF and to the subsequent growth, not just later steps of the particle growth. As a significant new result, we found out that the total particle formation rate varied much more between the different sites than the formation rate of charged particles. The results infer that the ion-induced nucleation has a minor contribution to particle formation in the boundary layer in most of the environments. These results give tools to better quantify the aerosol source provided by secondary NPF in various environments. The particle formation characteristics determined in this thesis can be used in global models to assess NPF s climatic effects.
Resumo:
The ternary metal nucleotide complexes [Ni(en)1.3(H2O)1.4(H2O)2][Ni(5?-dGMP)2(en)0.7-(H2O)0.6(H2O)2]·7H2O (1) and [Ni(en)2(H2O)2][Ni(5?-GMP)2(H2O)4]·6H2O (2)(en = ethylenediamine, 5?-dGMP = 2?-deoxyguanosine 5?-monophosphate, 5?-GMP = guanosine 5?-monophosphate) have been prepared and their structures analyzed by X-ray diffraction methods. Both compounds crystallise in the space group C2221 with a= 8.810(1), b= 25.090(4), c= 21.084(1)Å, and Z= 4 for (1) and a= 8.730(1), b= 25.691(4), c= 21.313(5)Å, and Z= 4 for (2). The structures were deduced from the analogous CoIII complexes and refined by full-matrix least-squares methods to final R values of 0.087 and 0.131 for 1 211 and 954 reflections for (1) and (2) respectively. An interesting feature of the deoxyribonucleotide complex (1) is that en is not totally labilized from the metal centre on nucleotide co-ordination, as observed in corresponding ribonucleotide complexes. Apart from extensive intra- and inter-molecular hydrogen bonding, the structures are stabilized by significant intracomplex base�base and base�sugar interactions. The nucleotides in both complexes have an anti base, C(2?)-endo sugar pucker, and gauche�gauche conformation about the C(4?)�C(5?) bond.
Resumo:
A substituted phosphoramidate has been used as a ligand to lanthanides for the first time. New complexes of lanthanide nitrates with O,O′,N-triisopropyl phosphoramidate (TIP) of the general formula Ln(TIP)3(NO3)3 where Ln=La-Yb and Y have been synthesised and characterised by chemical analysis, infrared and visible electronic spectra and electrical conductance.Infrared spectra indicate the coordination of the ligand to the metal ions through the oxygen of the P=O group. IR and conductance show that the nitrate groups are all coordinated. Electronic spectral shapes have been interpreted in terms of an eight coordinate geometry around the metal ions.
Resumo:
Floating in the air that surrounds us is a number of small particles, invisible to the human eye. The mixture of air and particles, liquid or solid, is called an aerosol. Aerosols have significant effects on air quality, visibility and health, and on the Earth's climate. Their effect on the Earth's climate is the least understood of climatically relevant effects. They can scatter the incoming radiation from the Sun, or they can act as seeds onto which cloud droplets are formed. Aerosol particles are created directly, by human activity or natural reasons such as breaking ocean waves or sandstorms. They can also be created indirectly as vapors or very small particles are emitted into the atmosphere and they combine to form small particles that later grow to reach climatically or health relevant sizes. The mechanisms through which those particles are formed is still under scientific discussion, even though this knowledge is crucial to make air quality or climate predictions, or to understand how aerosols will influence and will be influenced by the climate's feedback loops. One of the proposed mechanisms responsible for new particle formation is ion-induced nucleation. This mechanism is based on the idea that newly formed particles were ultimately formed around an electric charge. The amount of available charges in the atmosphere varies depending on radon concentrations in the soil and in the air, as well as incoming ionizing radiation from outer space. In this thesis, ion-induced nucleation is investigated through long-term measurements in two different environments: in the background site of Hyytiälä and in the urban site that is Helsinki. The main conclusion of this thesis is that ion-induced nucleation generally plays a minor role in new particle formation. The fraction of particles formed varies from day to day and from place to place. The relative importance of ion-induced nucleation, i.e. the fraction of particles formed through ion-induced nucleation, is bigger in cleaner areas where the absolute number of particles formed is smaller. Moreover, ion-induced nucleation contributes to a bigger fraction of particles on warmer days, when the sulfuric acid and water vapor saturation ratios are lower. This analysis will help to understand the feedbacks associated with climate change.
Resumo:
The study of molecular machines, and protein complexes in general, is a growth area of biology. Is there a computational method for inferring which combinations of proteins in an organism are likely to form a crystallizable complex? We use the Protein Data Bank (PDB) to assess the usefulness of inferred functional protein linkages for this task. We find that of 242 nonredundant prokaryotic protein complexes (complexes excluding structural variants of the same protein) from organisms that are shared between the current PDB and the Prolinks functional linkage database, 44% (107/242) contain proteins that are linked at high-confidence by one or more methods of computed functional linkages. This suggests that computing functional linkages will be useful in defining protein complexes for structural studies. We offer a database of such inferred linkages corresponding to likely protein complexes for some 629,952 pairs of proteins in 154 prokaryotes and archea.
Resumo:
In this study we present approximate analytical expressions for estimating the variation in multipole expansion coefficients as a function of the size of the apertures in the electrodes in axially symmetric (3D) and two-dimensional (2D) ion trap ion traps. Following the approach adopted in our earlier studies which focused on the role of apertures to fields within the traps, here too, the analytical expression we develop is a sum of two terms, A(n,noAperiure), the multipole expansion coefficient for a trap with no apertures and A(n,dueToAperture), the multipole expansion coefficient contributed by the aperture. A(n,noAperture) has been obtained numerically and A(n,dueToAperture) is obtained from the n th derivative of the potential within the trap. The expressions derived have been tested on two 3D geometries and two 2D geometries. These include the quadrupole ion trap (QIT) and the cylindrical ion trap (CIT) for 3D geometries and the linear ion trap (LIT) and the rectilinear ion trap (RIT) for the 2D geometries. Multipole expansion coefficients A(2) to A(12), estimated by our analytical expressions, were compared with the values obtained numerically (using the boundary element method) for aperture sizes varying up to 50% of the trap dimension. In all the plots presented, it is observed that our analytical expression for the variation of multipole expansion coefficients versus aperture size closely follows the trend of the numerical evaluations for the range of aperture sizes considered. The maximum relative percentage errors, which provide an estimate of the deviation of our values from those obtained numerically for each multipole expansion coefficient, are seen to be largely in the range of 10-15%. The leading multipole expansion coefficient, A(2), however, is seen to be estimated very well by our expressions, with most values being within 1% of the numerically determined values, with larger deviations seen for the QIT and the LIT for large aperture sizes. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Oxygen storage/release (OSC) capacity is an important feature common to all three-way catalysts to combat harmful exhaust emissions. To understand the mechanism of improved OSC for doped CeO2, we undertook the structural investigation by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), H-2-TPR (temperature-programmed hydrogen reduction) and density functional theoretical (DFT) calculations of transition-metal-, noble-metal-, and rare-earth (RE)-ion-substituted ceria. In this report, we present the relationship between the OSC and structural changes induced by the dopant ion in CeO2. Transition metal and noble metal ion substitution in ceria greatly enhances the reducibility of Ce1-xMxO2-delta (M = Mn, Fe, Co, Ni, Cu, Pd, Pt, Ru), whereas rare-earth-ion-substituted Ce(1-x)A(x)O(2-delta) (A = La, Y) have very little effect in improving the OSC. Our simulated optimized structure shows deviation in cation oxygen bond length from ideal bond length of 2.34 angstrom (for CeO2). For example, our theoretical calculation for Ce28Mn4O62 structure shows that Mn-O bonds are in 4 + 2 coordination with average bond lengths of 2.0 and 3.06 angstrom respectively. Although the four short Mn-O bond lengths spans the bond distance region of Mn2O3, the other two Mn-O bonds are moved to longer distances. The dopant transition and noble metal ions also affects Ce coordination shell and results in the formation of longer Ce-O bonds as well. Thus longer cation oxygen bonds for both dopant and host ions results in enhanced synergistic reduction of the solid solution. With Pd ion substitution in Ce1-xMxO2-delta (M = Mn, Fe, Co, Ni, Cu) further enhancement in OSC is observed in H-2-TPR. This effect is reflected in our model calculations by the presence of still longer bonds compared to the model without Pd ion doping. The synergistic effect is therefore due to enhanced reducibility of both dopant and host ion induced due to structural distortion of fluorite lattice in presence of dopant ion. For RE ions (RE = Y, La), our calculations show very little deviation of bonds lengths from ideal fluorite structure. The absence of longer Y-O/La-O and Ce-O bonds make the structure much less susceptible to reduction.
Resumo:
The C-nitrosation of bivalent quadridentate β-imino ketone complexes of nickel(II), copper(II), and palladium(II), with nitrosating reagents has been investigated. The chemical analysis and spectroscopic results reveal that one of the α-CH groups of the coordinated lignad undergoes selective nitrosation forming mono(hydroxyimino) derivative. The hydroxyimino group introduced coordinates through either N- or O- atom to metal(II) by dislodging the carbonyl group already coordinated. This gives rise to two linkage isomers, one with N-bonded and the other with O-bonded hydroxyimino group in the case of nickel(II) (except for 1d) and palladium(II), and a single isomer with O-bonded hydroxyimino group in copper(II) complexes. The isomers obtained from 1b and 1i have been separated by column chromatography. In chloroform each of the isomers of nickel(II) isomerizes to give an equilibrium mixture of two isomers, but not those of copper(II) and palladium(II).