920 resultados para INTELLIGENCE SYSTEMS METHODOLOGY


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Road pricing has emerged as an effective means of managing road traffic demand while simultaneously raising additional revenues to transportation agencies. Research on the factors that govern travel decisions has shown that user preferences may be a function of the demographic characteristics of the individuals and the perceived trip attributes. However, it is not clear what are the actual trip attributes considered in the travel decision- making process, how these attributes are perceived by travelers, and how the set of trip attributes change as a function of the time of the day or from day to day. In this study, operational Intelligent Transportation Systems (ITS) archives are mined and the aggregated preferences for a priced system are extracted at a fine time aggregation level for an extended number of days. The resulting information is related to corresponding time-varying trip attributes such as travel time, travel time reliability, charged toll, and other parameters. The time-varying user preferences and trip attributes are linked together by means of a binary choice model (Logit) with a linear utility function on trip attributes. The trip attributes weights in the utility function are then dynamically estimated for each time of day by means of an adaptive, limited-memory discrete Kalman filter (ALMF). The relationship between traveler choices and travel time is assessed using different rules to capture the logic that best represents the traveler perception and the effect of the real-time information on the observed preferences. The impact of travel time reliability on traveler choices is investigated considering its multiple definitions. It can be concluded based on the results that using the ALMF algorithm allows a robust estimation of time-varying weights in the utility function at fine time aggregation levels. The high correlations among the trip attributes severely constrain the simultaneous estimation of their weights in the utility function. Despite the data limitations, it is found that, the ALMF algorithm can provide stable estimates of the choice parameters for some periods of the day. Finally, it is found that the daily variation of the user sensitivities for different periods of the day resembles a well-defined normal distribution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation presents and evaluates a methodology for scheduling medical application workloads in virtualized computing environments. Such environments are being widely adopted by providers of "cloud computing" services. In the context of provisioning resources for medical applications, such environments allow users to deploy applications on distributed computing resources while keeping their data secure. Furthermore, higher level services that further abstract the infrastructure-related issues can be built on top of such infrastructures. For example, a medical imaging service can allow medical professionals to process their data in the cloud, easing them from the burden of having to deploy and manage these resources themselves. In this work, we focus on issues related to scheduling scientific workloads on virtualized environments. We build upon the knowledge base of traditional parallel job scheduling to address the specific case of medical applications while harnessing the benefits afforded by virtualization technology. To this end, we provide the following contributions: (1) An in-depth analysis of the execution characteristics of the target applications when run in virtualized environments. (2) A performance prediction methodology applicable to the target environment. (3) A scheduling algorithm that harnesses application knowledge and virtualization-related benefits to provide strong scheduling performance and quality of service guarantees. In the process of addressing these pertinent issues for our target user base (i.e. medical professionals and researchers), we provide insight that benefits a large community of scientific application users in industry and academia. Our execution time prediction and scheduling methodologies are implemented and evaluated on a real system running popular scientific applications. We find that we are able to predict the execution time of a number of these applications with an average error of 15%. Our scheduling methodology, which is tested with medical image processing workloads, is compared to that of two baseline scheduling solutions and we find that it outperforms them in terms of both the number of jobs processed and resource utilization by 20–30%, without violating any deadlines. We conclude that our solution is a viable approach to supporting the computational needs of medical users, even if the cloud computing paradigm is not widely adopted in its current form.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Storage is a central part of computing. Driven by exponentially increasing content generation rate and a widening performance gap between memory and secondary storage, researchers are in the perennial quest to push for further innovation. This has resulted in novel ways to "squeeze" more capacity and performance out of current and emerging storage technology. Adding intelligence and leveraging new types of storage devices has opened the door to a whole new class of optimizations to save cost, improve performance, and reduce energy consumption. In this dissertation, we first develop, analyze, and evaluate three storage extensions. Our first extension tracks application access patterns and writes data in the way individual applications most commonly access it to benefit from the sequential throughput of disks. Our second extension uses a lower power flash device as a cache to save energy and turn off the disk during idle periods. Our third extension is designed to leverage the characteristics of both disks and solid state devices by placing data in the most appropriate device to improve performance and save power. In developing these systems, we learned that extending the storage stack is a complex process. Implementing new ideas incurs a prolonged and cumbersome development process and requires developers to have advanced knowledge of the entire system to ensure that extensions accomplish their goal without compromising data recoverability. Futhermore, storage administrators are often reluctant to deploy specific storage extensions without understanding how they interact with other extensions and if the extension ultimately achieves the intended goal. We address these challenges by using a combination of approaches. First, we simplify the storage extension development process with system-level infrastructure that implements core functionality commonly needed for storage extension development. Second, we develop a formal theory to assist administrators deploy storage extensions while guaranteeing that the given high level goals are satisfied. There are, however, some cases for which our theory is inconclusive. For such scenarios we present an experimental methodology that allows administrators to pick an extension that performs best for a given workload. Our evaluation demostrates the benefits of both the infrastructure and the formal theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research focuses on developing a capacity planning methodology for the emerging concurrent engineer-to-order (ETO) operations. The primary focus is placed on the capacity planning at sales stage. This study examines the characteristics of capacity planning in a concurrent ETO operation environment, models the problem analytically, and proposes a practical capacity planning methodology for concurrent ETO operations in the industry. A computer program that mimics a concurrent ETO operation environment was written to validate the proposed methodology and test a set of rules that affect the performance of a concurrent ETO operation. ^ This study takes a systems engineering approach to the problem and employs systems engineering concepts and tools for the modeling and analysis of the problem, as well as for developing a practical solution to this problem. This study depicts a concurrent ETO environment in which capacity is planned. The capacity planning problem is modeled into a mixed integer program and then solved for smaller-sized applications to evaluate its validity and solution complexity. The objective is to select the best set of available jobs to maximize the profit, while having sufficient capacity to meet each due date expectation. ^ The nature of capacity planning for concurrent ETO operations is different from other operation modes. The search for an effective solution to this problem has been an emerging research field. This study characterizes the problem of capacity planning and proposes a solution approach to the problem. This mathematical model relates work requirements to capacity over the planning horizon. The methodology is proposed for solving industry-scale problems. Along with the capacity planning methodology, a set of heuristic rules was evaluated for improving concurrent ETO planning. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many systems and applications are continuously producing events. These events are used to record the status of the system and trace the behaviors of the systems. By examining these events, system administrators can check the potential problems of these systems. If the temporal dynamics of the systems are further investigated, the underlying patterns can be discovered. The uncovered knowledge can be leveraged to predict the future system behaviors or to mitigate the potential risks of the systems. Moreover, the system administrators can utilize the temporal patterns to set up event management rules to make the system more intelligent. With the popularity of data mining techniques in recent years, these events grad- ually become more and more useful. Despite the recent advances of the data mining techniques, the application to system event mining is still in a rudimentary stage. Most of works are still focusing on episodes mining or frequent pattern discovering. These methods are unable to provide a brief yet comprehensible summary to reveal the valuable information from the high level perspective. Moreover, these methods provide little actionable knowledge to help the system administrators to better man- age the systems. To better make use of the recorded events, more practical techniques are required. From the perspective of data mining, three correlated directions are considered to be helpful for system management: (1) Provide concise yet comprehensive summaries about the running status of the systems; (2) Make the systems more intelligence and autonomous; (3) Effectively detect the abnormal behaviors of the systems. Due to the richness of the event logs, all these directions can be solved in the data-driven manner. And in this way, the robustness of the systems can be enhanced and the goal of autonomous management can be approached. This dissertation mainly focuses on the foregoing directions that leverage tem- poral mining techniques to facilitate system management. More specifically, three concrete topics will be discussed, including event, resource demand prediction, and streaming anomaly detection. Besides the theoretic contributions, the experimental evaluation will also be presented to demonstrate the effectiveness and efficacy of the corresponding solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Today, databases have become an integral part of information systems. In the past two decades, we have seen different database systems being developed independently and used in different applications domains. Today's interconnected networks and advanced applications, such as data warehousing, data mining & knowledge discovery and intelligent data access to information on the Web, have created a need for integrated access to such heterogeneous, autonomous, distributed database systems. Heterogeneous/multidatabase research has focused on this issue resulting in many different approaches. However, a single, generally accepted methodology in academia or industry has not emerged providing ubiquitous intelligent data access from heterogeneous, autonomous, distributed information sources. This thesis describes a heterogeneous database system being developed at Highperformance Database Research Center (HPDRC). A major impediment to ubiquitous deployment of multidatabase technology is the difficulty in resolving semantic heterogeneity. That is, identifying related information sources for integration and querying purposes. Our approach considers the semantics of the meta-data constructs in resolving this issue. The major contributions of the thesis work include: (i.) providing a scalable, easy-to-implement architecture for developing a heterogeneous multidatabase system, utilizing Semantic Binary Object-oriented Data Model (Sem-ODM) and Semantic SQL query language to capture the semantics of the data sources being integrated and to provide an easy-to-use query facility; (ii.) a methodology for semantic heterogeneity resolution by investigating into the extents of the meta-data constructs of component schemas. This methodology is shown to be correct, complete and unambiguous; (iii.) a semi-automated technique for identifying semantic relations, which is the basis of semantic knowledge for integration and querying, using shared ontologies for context-mediation; (iv.) resolutions for schematic conflicts and a language for defining global views from a set of component Sem-ODM schemas; (v.) design of a knowledge base for storing and manipulating meta-data and knowledge acquired during the integration process. This knowledge base acts as the interface between integration and query processing modules; (vi.) techniques for Semantic SQL query processing and optimization based on semantic knowledge in a heterogeneous database environment; and (vii.) a framework for intelligent computing and communication on the Internet applying the concepts of our work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Integration of the measurement activity into the production process is an essential rule in digital enterprise technology, especially for large volume product manufacturing, such as aerospace, shipbuilding, power generation and automotive industries. Measurement resource planning is a structured method of selecting and deploying necessary measurement resources to implement quality aims of product development. In this research, a new mapping approach for measurement resource planning is proposed. Firstly, quality aims are identified in the form of a number of specifications and engineering requirements of one quality characteristics (QCs) at a specific stage of product life cycle, and also measurement systems are classified according to the attribute of QCs. Secondly, a matrix mapping approach for measurement resource planning is outlined together with an optimization algorithm for combination between quality aims and measurement systems. Finally, the proposed methodology has been studied in shipbuilding to solve the problem of measurement resource planning, by which the measurement resources are deployed to satisfy all the quality aims. © Springer-Verlag Berlin Heidelberg 2010.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As the world population continues to grow past seven billion people and global challenges continue to persist including resource availability, biodiversity loss, climate change and human well-being, a new science is required that can address the integrated nature of these challenges and the multiple scales on which they are manifest. Sustainability science has emerged to fill this role. In the fifteen years since it was first called for in the pages of Science, it has rapidly matured, however its place in the history of science and the way it is practiced today must be continually evaluated. In Part I, two chapters address this theoretical and practical grounding. Part II transitions to the applied practice of sustainability science in addressing the urban heat island (UHI) challenge wherein the climate of urban areas are warmer than their surrounding rural environs. The UHI has become increasingly important within the study of earth sciences given the increased focus on climate change and as the balance of humans now live in urban areas.

In Chapter 2 a novel contribution to the historical context of sustainability is argued. Sustainability as a concept characterizing the relationship between humans and nature emerged in the mid to late 20th century as a response to findings used to also characterize the Anthropocene. Emerging from the human-nature relationships that came before it, evidence is provided that suggests Sustainability was enabled by technology and a reorientation of world-view and is unique in its global boundary, systematic approach and ambition for both well being and the continued availability of resources and Earth system function. Sustainability is further an ambition that has wide appeal, making it one of the first normative concepts of the Anthropocene.

Despite its widespread emergence and adoption, sustainability science continues to suffer from definitional ambiguity within the academe. In Chapter 3, a review of efforts to provide direction and structure to the science reveals a continuum of approaches anchored at either end by differing visions of how the science interfaces with practice (solutions). At one end, basic science of societally defined problems informs decisions about possible solutions and their application. At the other end, applied research directly affects the options available to decision makers. While clear from the literature, survey data further suggests that the dichotomy does not appear to be as apparent in the minds of practitioners.

In Chapter 4, the UHI is first addressed at the synoptic, mesoscale. Urban climate is the most immediate manifestation of the warming global climate for the majority of people on earth. Nearly half of those people live in small to medium sized cities, an understudied scale in urban climate research. Widespread characterization would be useful to decision makers in planning and design. Using a multi-method approach, the mesoscale UHI in the study region is characterized and the secular trend over the last sixty years evaluated. Under isolated ideal conditions the findings indicate a UHI of 5.3 ± 0.97 °C to be present in the study area, the magnitude of which is growing over time.

Although urban heat islands (UHI) are well studied, there remain no panaceas for local scale mitigation and adaptation methods, therefore continued attention to characterization of the phenomenon in urban centers of different scales around the globe is required. In Chapter 5, a local scale analysis of the canopy layer and surface UHI in a medium sized city in North Carolina, USA is conducted using multiple methods including stationary urban sensors, mobile transects and remote sensing. Focusing on the ideal conditions for UHI development during an anticyclonic summer heat event, the study observes a range of UHI intensity depending on the method of observation: 8.7 °C from the stationary urban sensors; 6.9 °C from mobile transects; and, 2.2 °C from remote sensing. Additional attention is paid to the diurnal dynamics of the UHI and its correlation with vegetation indices, dewpoint and albedo. Evapotranspiration is shown to drive dynamics in the study region.

Finally, recognizing that a bridge must be established between the physical science community studying the Urban Heat Island (UHI) effect, and the planning community and decision makers implementing urban form and development policies, Chapter 6 evaluates multiple urban form characterization methods. Methods evaluated include local climate zones (LCZ), national land cover database (NCLD) classes and urban cluster analysis (UCA) to determine their utility in describing the distribution of the UHI based on three standard observation types 1) fixed urban temperature sensors, 2) mobile transects and, 3) remote sensing. Bivariate, regression and ANOVA tests are used to conduct the analyses. Findings indicate that the NLCD classes are best correlated to the UHI intensity and distribution in the study area. Further, while the UCA method is not useful directly, the variables included in the method are predictive based on regression analysis so the potential for better model design exists. Land cover variables including albedo, impervious surface fraction and pervious surface fraction are found to dominate the distribution of the UHI in the study area regardless of observation method.

Chapter 7 provides a summary of findings, and offers a brief analysis of their implications for both the scientific discourse generally, and the study area specifically. In general, the work undertaken does not achieve the full ambition of sustainability science, additional work is required to translate findings to practice and more fully evaluate adoption. The implications for planning and development in the local region are addressed in the context of a major light-rail infrastructure project including several systems level considerations like human health and development. Finally, several avenues for future work are outlined. Within the theoretical development of sustainability science, these pathways include more robust evaluations of the theoretical and actual practice. Within the UHI context, these include development of an integrated urban form characterization model, application of study methodology in other geographic areas and at different scales, and use of novel experimental methods including distributed sensor networks and citizen science.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Travaux d'études doctorales réalisées conjointement avec les travaux de recherches doctorales de Nicolas Leduc, étudiant au doctorat en génie informatique à l'École Polytechnique de Montréal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

En este trabajo aplicamos a la red social Twitter un modelo de análisis del discurso político y mediático desarrollado en publicaciones previas, que permite hacer compatible el estudio de los datos discursivos con propuestas explicativas surgidas a propósito de la comunicación política (neurocomunicación) y de la comunicación digital (la red como quinto estado, convergencia, inteligencia colectiva). Asumimos que hay categorías del encuadre discursivo (frame) que pueden ser tratadas como indicadores de habilidades cognitivas y comunicativas. Analizamos estas categorías agrupándolas en tres dimensiones fundamentales: la intencional (ilocutividad del tuit, encuadre interpretativo de las etiquetas), referencial (temas, protagonistas), e interactiva (alineamiento estructural, predictibilidad; marcas de intertextualidad y dialogismo; afiliación partidista). El corpus consta de 4116 tuits: 3000 tuits pertenecientes a los programas Al Rojo Vivo (La Sexta: A3 Media), Las Mañanas Cuatro (Cuatro: Mediaset) y Los Desayunos de TVE (RTVE), 1116 tuits de seguidores de los programas, que corresponden a 45 tuits de cada programa. Los resultados confirman que el modelo permite establecer diferentes perfiles de subjetividad política en las cuentas de Twitter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clustering algorithms, pattern mining techniques and associated quality metrics emerged as reliable methods for modeling learners’ performance, comprehension and interaction in given educational scenarios. The specificity of available data such as missing values, extreme values or outliers, creates a challenge to extract significant user models from an educational perspective. In this paper we introduce a pattern detection mechanism with-in our data analytics tool based on k-means clustering and on SSE, silhouette, Dunn index and Xi-Beni index quality metrics. Experiments performed on a dataset obtained from our online e-learning platform show that the extracted interaction patterns were representative in classifying learners. Furthermore, the performed monitoring activities created a strong basis for generating automatic feedback to learners in terms of their course participation, while relying on their previous performance. In addition, our analysis introduces automatic triggers that highlight learners who will potentially fail the course, enabling tutors to take timely actions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rhythm analysis of written texts focuses on literary analysis and it mainly considers poetry. In this paper we investigate the relevance of rhythmic features for categorizing texts in prosaic form pertaining to different genres. Our contribution is threefold. First, we define a set of rhythmic features for written texts. Second, we extract these features from three corpora, of speeches, essays, and newspaper articles. Third, we perform feature selection by means of statistical analyses, and determine a subset of features which efficiently discriminates between the three genres. We find that using as little as eight rhythmic features, documents can be adequately assigned to a given genre with an accuracy of around 80 %, significantly higher than the 33 % baseline which results from random assignment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Opinion mining and sentiment analysis are important research areas of Natural Language Processing (NLP) tools and have become viable alternatives for automatically extracting the affective information found in texts. Our aim is to build an NLP model to analyze gamers’ sentiments and opinions expressed in a corpus of 9750 game reviews. A Principal Component Analysis using sentiment analysis features explained 51.2 % of the variance of the reviews and provides an integrated view of the major sentiment and topic related dimensions expressed in game reviews. A Discriminant Function Analysis based on the emerging components classified game reviews into positive, neutral and negative ratings with a 55 % accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cyber-physical systems tightly integrate physical processes and information and communication technologies. As today’s critical infrastructures, e.g., the power grid or water distribution networks, are complex cyber-physical systems, ensuring their safety and security becomes of paramount importance. Traditional safety analysis methods, such as HAZOP, are ill-suited to assess these systems. Furthermore, cybersecurity vulnerabilities are often not considered critical, because their effects on the physical processes are not fully understood. In this work, we present STPA-SafeSec, a novel analysis methodology for both safety and security. Its results show the dependencies between cybersecurity vulnerabilities and system safety. Using this information, the most effective mitigation strategies to ensure safety and security of the system can be readily identified. We apply STPA-SafeSec to a use case in the power grid domain, and highlight its benefits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cybercriminals ramp up their efforts with sophisticated techniques while defenders gradually update their typical security measures. Attackers often have a long-term interest in their targets. Due to a number of factors such as scale, architecture and nonproductive traffic however it makes difficult to detect them using typical intrusion detection techniques. Cyber early warning systems (CEWS) aim at alerting such attempts in their nascent stages using preliminary indicators. Design and implementation of such systems involves numerous research challenges such as generic set of indicators, intelligence gathering, uncertainty reasoning and information fusion. This paper discusses such challenges and presents the reader with compelling motivation. A carefully deployed empirical analysis using a real world attack scenario and a real network traffic capture is also presented.