889 resultados para Hydrogen bonding.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Gaussian-2, Gaussian-3, Complete Basis Set-QB3, and Complete Basis Set-APNO methods have been used to calculate geometries of neutral clusters of water, (H2O)n, where n = 2–6. The structures are in excellent agreement with those determined from experiment and those predicted from previous high-level calculations. These methods also provide excellent thermochemical predictions for water clusters, and thus can be used with confidence in evaluating the structures and thermochemistry of water clusters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have performed a series of first-principles electronic structure calculations to examine the reaction pathways and the corresponding free energy barriers for the ester hydrolysis of protonated cocaine in its chair and boat conformations. The calculated free energy barriers for the benzoyl ester hydrolysis of protonated chair cocaine are close to the corresponding barriers calculated for the benzoyl ester hydrolysis of neutral cocaine. However, the free energy barrier calculated for the methyl ester hydrolysis of protonated cocaine in its chair conformation is significantly lower than for the methyl ester hydrolysis of neutral cocaine and for the dominant pathway of the benzoyl ester hydrolysis of protonated cocaine. The significant decrease of the free energy barrier, ∼4 kcal/mol, is attributed to the intramolecular acid catalysis of the methyl ester hydrolysis of protonated cocaine, because the transition state structure is stabilized by the strong hydrogen bond between the carbonyl oxygen of the methyl ester moiety and the protonated tropane N. The relative magnitudes of the free energy barriers calculated for different pathways of the ester hydrolysis of protonated chair cocaine are consistent with the experimental kinetic data for cocaine hydrolysis under physiologic conditions. Similar intramolecular acid catalysis also occurs for the benzoyl ester hydrolysis of (protonated) boat cocaine in the physiologic condition, although the contribution of the intramolecular hydrogen bonding to transition state stabilization is negligible. Nonetheless, the predictability of the intramolecular hydrogen bonding could be useful in generating antibody-based catalysts that recruit cocaine to the boat conformation and an analog that elicited antibodies to approximate the protonated tropane N and the benzoyl O more closely than the natural boat conformer might increase the contribution from hydrogen bonding. Such a stable analog of the transition state for intramolecular catalysis of cocaine benzoyl-ester hydrolysis was synthesized and used to successfully elicit a number of anticocaine catalytic antibodies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Theory predicts the water hexamer to be the smallest water cluster with a three-dimensional hydrogen-bonding network as its minimum energy structure. There are several possible low-energy isomers, and calculations with different methods and basis sets assign them different relative stabilities. Previous experimental work has provided evidence for the cage, book, and cyclic isomers, but no experiment has identified multiple coexisting structures. Here, we report that broadband rotational spectroscopy in a pulsed supersonic expansion unambiguously identifies all three isomers; we determined their oxygen framework structures by means of oxygen-18–substituted water (H218O). Relative isomer populations at different expansion conditions establish that the cage isomer is the minimum energy structure. Rotational spectra consistent with predicted heptamer and nonamer structures have also been identified.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The 3 angstrom resolution crystal structure of the Escherichia coli catabolite gene activator protein (CAP) complexed with a 30-base pair DNA sequence shows that the DNA is bent by 900. This bend results almost entirely from two 400 kinks that occur between TG/CA base pairs at positions 5 and 6 on each side of the dyad axis of the complex. DNA sequence discrimination by CAP derives both from sequence-dependent distortion of the DNA helix and from direct hydrogen-bonding interactions between three protein side chains and the exposed edges of three base pairs in the major groove of the DNA. The structure of this transcription factor-DNA complex provides insights into possible mechanisms of transcription activation

Relevância:

60.00% 60.00%

Publicador:

Resumo:

W5.43(194), a conserved tryptophan residue among G-protein coupled receptors (GPCRs) and cannabinoid receptors (CB), was examined in the present report for its significance in CB2 receptor ligand binding and adenylyl cyclase (AC) activity. Computer modeling postulates that this site in CB2 may be involved in the affinity of WIN55212-2 and SR144528 through aromatic contacts. In the present study, we reported that a CB2 receptor mutant, W5.43(194)Y, which had a tyrosine (Y) substitution for tryptophan (W), retained the binding affinity for CB agonist CP55940, but reduced binding affinity for CB2 agonist WIN55212-2 and inverse agonist SR144528 by 8-fold and 5-fold, respectively; the CB2 W5.43(194)F and W5.43(194)A mutations significantly affect the binding activities of CP55940, WIN55212-2 and SR144528. Furthermore, we found that agonist-mediated inhibition of the forskolin-induced cAMP production was dramatically diminished in the CB2 mutant W5.43(194)Y, whereas W5.43(194)F and W5.43(194)A mutants resulted in complete elimination of downstream signaling, suggesting that W5.43(194) was essential for the full activation of CB2. These results indicate that both aromatic interaction and hydrogen bonding are involved in ligand binding for the residue W5.43(194), and the mutations of this tryptophan site may affect the conformation of the ligand binding pocket and therefore control the active conformation of the wild type CB2 receptor. W5.43(194)Y/F/A mutations also displayed noticeable enhancement of the constitutive activation probably attributed to the receptor conformational changes resulted from the mutations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Solvatochromism and thermochromism describe how a solvent or environment affects the photophysical behavior of a photoluminescent solute. The most common use of solvatochromism is as a probe in which the polarity of a solvent in which a solvatochromic solute is dissolved can be spectroscopically measured. Solvatochromic and thermochromic studies of tryptanthrin in several different solvents are reported. Absorption and corrected emission spectra for tryptanthrin at ~10-6 M concentrations are reported in four aprotic and nine alcoholic solvents. The absorption spectra are relatively unaffected by changes in solvent polarity and by differences in the hydrogen bonding ability of the alcoholic solvents. The emission spectra are much more affected by changes in solvent polarity and hydrogen bonding ability. In aprotic solvents, emission energy decreases and emission intensity increases with increasing solvent polarity. In the alcoholic solvents, emission energy also decreases with increasing solvent polarity. However, emission intensity for the alcoholic solvents varies significantly from the aprotic solvents over similar polarity ranges. This suggests that in the alcoholic solvents, hydrogen bonding ability correlates better than polarity to emission energy and intensity trends. The absorption and emission data in the aprotic solvents were also used to estimate the ground and emitting excited state dipole moments for tryptanthrin. The value obtained for the ground state dipole moment (2.37 D) agrees with theoretical results (2.06 D) and a previously reported experimental value (2.0 D). Attempts to explain previously reported results and conclusions with respect to the solvatochromic behavior of the aromatic carbonyls fluorenone and benzo(b)fluorenone were explored in an attempt to understand the solvatochromic response of tryptanthrin. Such attempts include models dependent on non-radiative decay pathways like intersystem crossing, internal conversion, and hydrogen bonding interactions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A comprehensive knowledge of cell wallstructure and function throughout the plant kingdom is essential to understanding cell wall evolution. The fundamental understanding of the charophycean green algal cell wall is broadening. The similarities and differences that exist between land plant and algal cell walls provide opportunities to understand plant evolution. A variety of polymers previously associated with higher plants were discovered in the charophycean green algae (CGA), including homogalacturonans, cross-linking glycans, arabinogalactan protein, β-glucans, and cellulose. The cellulose content of CGA cell walls ranged from 6% to 43%, with the higher valuescomparable to that found in the primary cell wall of land plants (20-30%). (1,3)β-glucans were found in the unicellular Chlorokybus atmophyticus, Penium margaritaceum, and Cosmarium turpini, the unbranched filamentous Klebsormidium flaccidum, and the multicellular Chara corallina. The discovery of homogalacturonan in Penium margaritaceum representsthe first confirmation of land plant-type pectinsin desmids and the second rigorous characterization of a pectin polymer from the charophycean algae. Homogalacturonan was also indicated from the basal species Chlorokybus atmophyticus and Klebsormidium flaccidum. There is evidence of branched pectins in Cosmarium turpini and linkage analysis suggests the presence of type I rhamnogalacturonan (RGI). Cross-linking β-glucans are associated with cellulose microfibrils during land plant cell growth, and were found in the cell wall of CGA. The evidence of mixed-linkage glucan (MLG) in the 11 charophytesis both suprising and significant given that MLG was once thought to be specific to some grasses. The organization and structure of Cosmarium turpini and Chara corallina MLG was found to be similar to that of Equisetumspp., whereas the basal species of the CGA, Chlorokybus atmophyticus and Klebsormidium flaccidum, have unique organization of alternating of 3- and 4-linkages. The significance of this result on the evolution of the MLG synthetic pathway has yet to be determined. The extracellular matrix (ECM) of Chlorokybus atmophyticus, Klebsormidium flaccidum, and Spirogyra spp. exhibits significant biochemical diversity, ranging from distinct “land plant” polymers to polysaccharides unique to these algae. The neutral sugar composition of Chlorokybus atmophyticus hot water extract and Spirogyra extracellular polymeric substance (EPS), combined with antibody labeling results, revealed the distinct possibility of an arabinogalactan protein in these organisms. Polysaccharide analysis of Zygnematales (desmid) EPS, indicated a probable range of different EPS backbones and substitution patterns upon the core portions of the molecules. Desmid EPS is predominately composed of a complex matrix of branched, uronic acid containing polysaccharides with ester sulfate substitutions and, as such, has an almost infinite capacity for various hydrogen bonding, hydrophobic interaction and ionic cross-bridging motifs, which characterize their unique function in biofilms. My observations support the hypothesis that members of the CGA represent the phylogenetic line that gave rise to vascular plants and that the primary cell wall of vascular plants many have evolved directly from structures typical of the cell wall of filamentous green algae found in the charophycean green algae.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The transbilayer aminophospholipid distributions in small unilamellar vesicles comprising of phosphatidylethanolamine or its analogs (bearing modifications in the polar headgroup) and egg hosphatidylcholine were ascertained using trinitrobenzenesulfonic acid as external membrane probe. These vesicles, containing 10-30 mol% phosphatidylethanolamine or its analogs, were formed by sonication and fractionated by centrifugation. Phosphatidylethanolamine at low concentrations (10 mol%) preferentially localized in the outer monolayer. This preference appeared to be reversed at higher phosphatidylethanolamine concentrations (30 mol%). Unlike this finding, phosphatidylethanolamine bearing ethyl, phenyl and benzyl substituents at the carbon atom adjacent to the amino group distributed mainly in the outer surface irrespective of their concentrations. Similar results were obtained when the phosphate and amino groups were separated by three methylene residues. These observations suggest that the effective polar headgroup volume and/or hydrogen-bonding capacity of phospholipids are the important factors that determine their distribution in small unilamellar vesicles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

T cell receptors (TCR) containing Vβ20-1 have been implicated in a wide range of T cell mediated disease and allergic reactions, making it a target for understanding these. Mechanics of T cell receptors are largely unexplained by static structures available from x-ray crystallographic studies. A small number of molecular dynamic simulations have been conducted on TCR, however are currently lacking either portions of the receptor or explanations for differences between binding and non-binding TCR recognition of respective peptide-HLA. We performed molecular dynamic simulations of a TCR containing variable domain Vβ20-1, sequenced from drug responsive T cells. These were initially from a patient showing maculopapular eruptions in response to the sulfanilamide-antibiotic sulfamethoxazole (SMX). The CDR2β domain of this TCR was found to dock SMX with high affinity. Using this compound as a perturbation, overall mechanisms involved in responses mediated by this receptor were explored, showing a chemical action on the TCR free from HLA or peptide interaction. Our simulations show two completely separate modes of binding cognate peptide-HLA complexes, with an increased affinity induced by SMX bound to the Vβ20-1. Overall binding of the TCR is mediated through a primary recognition by either the variable β or α domain, and a switch in recognition within these across TCR loops contacting the peptide and HLA occurs when SMX is present in the CDR2β loop. Large binding affinity differences are induced by summed small amino acid changes primarily by SMX modifying only three critical CDR2β loop amino acid positions. These residues, TYRβ57, ASPβ64, and LYSβ65 initially hold hydrogen bonds from the CDR2β to adjacent CDR loops. Effects from SMX binding are amplified and traverse longer distances through internal TCR hydrogen bonding networks, controlling the overall TCR conformation. Thus, the CDR2β of Vβ20-1 acts as a ligand controlled switch affecting overall TCR binding affinity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The rare mixed copper-zinc phosphate mineral veszelyite (Cu,Zn)2Zn(PO4)(OH)3·2H2O space group P21/c, a = 7.5096(2), b = 10.2281(2), c = 9.8258(2) Å, β = 103.3040(10)°, V = 734.45(3) Å3 was investigated by in situ temperature-dependent single-crystal X-ray structure refinements. The atomic arrangement of veszelyite consists of an alternation of octahedral and tetrahedral sheets. The Jahn-Teller distorted CuO6 octahedra form sheets with eight-membered rings. The tetrahedral sheet composed of PO4 and ZnO3(OH) tetrahedra shows strong topological similarities to that of cavansite, gismondine, and kipushite.Diffraction data of a sample from Zdravo Vrelo, near Kreševo (Bosnia and Herzegovina) have been measured in steps of 25 up to 225 °C. Hydrogen positions and the hydrogen-bond system were determined experimentally from the structure refinements of data collected up to 125 °C. At 200 °C, the hydrogen-bonding scheme was inferred from bond-valence calculations and donor-acceptor distances. The hydrogen-bond system connects the tetrahedral sheet to the octahedral sheet and also braces the Cu sheet.At 150 °C, the H2O molecule at H2O2 was released and the Cu coordination (Cu1 and Cu2) decreased from originally six- to fivefold. Cu1 has a square planar coordination by four OH groups and an elongate distance to O3, whereas Cu2 has the Jahn-Teller characteristic elongate bond to H2O1. The unit-cell volume decreased 7% from originally 734.45(3) to 686.4(4) Å3 leading to a formula with 1 H2O pfu. The new phase observed above 150 °C is characterized by an increase of the c axis and a shortening of the b axis. The bending of T-O-T angles causes an increasing elliptical shape of the eight-membered rings in the tetrahedral and octahedral sheets. Moreover a rearrangement of the hydrogen-bond system was observed.At 225 °C, the structure degrades to an X-ray amorphous residual due to release of the last H2O molecule at H2O1. The stronger Jahn-Teller distortion of Cu1 relative to Cu2 suggests that Cu1 is fully occupied by Cu, whereas Cu2 bears significant Zn. H2O1 is the fifth ligand of Cu2. Zn at Cu2 is not favorable to adopt planar fourfold coordination. Thus, if the last water molecule is expelled the structure is destabilized.This study contributes to understanding the dehydration mechanism and thermal stability of supergene minerals characterized by Jahn-Teller distorted octahedra with mixed Cu, Zn occupancy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hsp70s mediate protein folding, translocation, and macromolecular complex remodeling reactions. Their activities are regulated by proteins that exchange ADP for ATP from the nucleotide-binding domain (NBD) of the Hsp70. These nucleotide exchange factors (NEFs) include the Hsp110s, which are themselves members of the Hsp70 family. We report the structure of an Hsp110:Hsc70 nucleotide exchange complex. The complex is characterized by extensive protein:protein interactions and symmetric bridging interactions between the nucleotides bound in each partner protein's NBD. An electropositive pore allows nucleotides to enter and exit the complex. The role of nucleotides in complex formation and dissociation, and the effects of the protein:protein interactions on nucleotide exchange, can be understood in terms of the coupled effects of the nucleotides and protein:protein interactions on the open-closed isomerization of the NBDs. The symmetrical interactions in the complex may model other Hsp70 family heterodimers in which two Hsp70s reciprocally act as NEFs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The synthesis and incorporation into oligonucleotides of C-nucleosides containing the two aromatic, non-hydrogen-bonding nucleobase substitutes biphenyl (I) and bipyridyl (Y) are described. Their homo- and hetero-recognition properties in different sequential arrangements were then investigated via UV-melting curve analysis, gel mobility assays, CD- and NMR spectroscopy. An NMR analysis of a dodecamer duplex containing one biphenyl pair in the center, as well as CD data on duplexes with multiple insertions provide further evidence for the zipper-like interstrand stacking motif that we proposed earlier based on molecular modeling. UV-thermal melting experiments with duplexes containing one to up to seven I- or Y base pairs revealed a constant increase in T(m) in the case of I and a constant decrease for Y. Mixed I/Y base pairs lead to stabilities in between the homoseries. Insertion of alternating I/abasic site- or Y/abasic site pairs strongly decreases the thermal stability of duplexes. Asymmetric distribution of I- or Y residues on either strand of the duplex were also investigated in this context. Duplexes with three natural base pairs at both ends and 50 % of I pairs in the center are still readily formed, while duplexes with blunt ended I pairs tend to aggregate unspecifically. Duplexes with one natural overhang at the end of a I-I base pair tract can both aggregate or form ordered duplexes, depending on the nature of the natural bases in the overhang

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The crystal structure of the resting state of cytochrome P450cam (CYP101), a heme thiolate protein, shows a cluster of six water molecules in the substrate binding pocket, one of which is coordinating to iron(III) as sixth ligand. The resting state is low-spin and changes to high-spin when substrate camphor binds and H2O is removed. In contrast to the protein, previously synthesised enzyme models such as H2O[BOND]FeIII(porph)(ArS−) were shown to be purely high-spin. Iron(S−)porphyrins with different distal sites mimicking proposed remote effects have been prepared and studied by cw-EPR. The results indicate that the low-spin of the resting state of P450cam is due to the fact that the water molecule coordinating to iron has an OH−-like character because of hydrogen bonding and polarisation of the water cluster, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

​2-Aminopurine (​2AP) is a fluorescent isomer of ​adenine and has a fluorescence lifetime of ~11 ns in water. It is widely used in biochemical settings as a site-specific fluorescent probe of DNA and RNA structure and base-flipping and -folding. These assays assume that ​2AP is intrinsically strongly fluorescent. Here, we show this not to be the case, observing that gas-phase, jet-cooled ​2-aminopurine and ​9-methyl-2-aminopurine have very short fluorescence lifetimes (156 ps and 210 ps, respectively); they are, to all intents and purposes, non-fluorescent. We find that the lifetime of ​2-aminopurine increases dramatically when it is part of a hydrate cluster, 2AP·(H2O)n, where n = 1–3. Not only does it depend on the presence of water molecules, it also depends on the specific hydrogen-bonding site to which they attach and on the number of H2O molecules at that site. We selectively microhydrate ​2-aminopurine at its sugar-edge, cis-amino or trans-amino sites and see that its fluorescence lifetime increases by 4, 50 and 95 times (to 14.5 ns), respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The isostructural title compounds, {(C7H7N2)2[SnI4]}n, (1), and {(C7H5F2N2)2[SnI4]}n, (2), show a layered perovskite-type structure composed of anionic {[SnI4]2-}n sheets parallel to (100), which are decorated on both sides with templating benzimidazolium or 5,6-di­fluoro­benzimidazolium cations, respectively. These planar organic heterocycles mainly form N-H...I hydrogen bonds to the terminal I atoms of the corner-sharing [SnI6] octa­hedra (point group symmetry 2) from the inorganic layer, but not to the bridging ones. This is in contrast to most of the reported structures of related compounds where ammonium cations are involved. Here hydrogen bonding to both types of iodine atoms and thereby a distortion of the inorganic layers to various extents is observed. For (1) and (2), all Sn-I-Sn angles are linear and no out-of-plane distortions of the inorganic layers occur, a fact of relevance in view of the material properties. The arrangement of the aromatic cations is mainly determined through the direction of the N-H...I hydrogen bonds. The coherence between organic bilayers along [100] is mainly achieved through van der Waals inter­actions.