849 resultados para High-fiber diet.
Resumo:
The Repair of segmental defects in load-bearing long bones is a challenging task because of the diversity of the load affecting the area; axial, bending, shearing and torsional forces all come together to test the stability/integrity of the bone. The natural biomechanical requirements for bone restorative materials include strength to withstand heavy loads, and adaptivity to conform into a biological environment without disturbing or damaging it. Fiber-reinforced composite (FRC) materials have shown promise, as metals and ceramics have been too rigid, and polymers alone are lacking in strength which is needed for restoration. The versatility of the fiber-reinforced composites also allows tailoring of the composite to meet the multitude of bone properties in the skeleton. The attachment and incorporation of a bone substitute to bone has been advanced by different surface modification methods. Most often this is achieved by the creation of surface texture, which allows bone growth, onto the substitute, creating a mechanical interlocking. Another method is to alter the chemical properties of the surface to create bonding with the bone – for example with a hydroxyapatite (HA) or a bioactive glass (BG) coating. A novel fiber-reinforced composite implant material with a porous surface was developed for bone substitution purposes in load-bearing applications. The material’s biomechanical properties were tailored with unidirectional fiber reinforcement to match the strength of cortical bone. To advance bone growth onto the material, an optimal surface porosity was created by a dissolution process, and an addition of bioactive glass to the material was explored. The effects of dissolution and orientation of the fiber reinforcement were also evaluated for bone-bonding purposes. The Biological response to the implant material was evaluated in a cell culture study to assure the safety of the materials combined. To test the material’s properties in a clinical setting, an animal model was used. A critical-size bone defect in a rabbit’s tibia was used to test the material in a load-bearing application, with short- and long-term follow-up, and a histological evaluation of the incorporation to the host bone. The biomechanical results of the study showed that the material is durable and the tailoring of the properties can be reproduced reliably. The Biological response - ex vivo - to the created surface structure favours the attachment and growth of bone cells, with the additional benefit of bioactive glass appearing on the surface. No toxic reactions to possible agents leaching from the material could be detected in the cell culture study when compared to a nontoxic control material. The mechanical interlocking was enhanced - as expected - with the porosity, whereas the reinforcing fibers protruding from the surface of the implant gave additional strength when tested in a bone-bonding model. Animal experiments verified that the material is capable of withstanding load-bearing conditions in prolonged use without breaking of the material or creating stress shielding effects to the host bone. A Histological examination verified the enhanced incorporation to host bone with an abundance of bone growth onto and over the material. This was achieved with minimal tissue reactions to a foreign body. An FRC implant with surface porosity displays potential in the field of reconstructive surgery, especially regarding large bone defects with high demands on strength and shape retention in load-bearing areas or flat bones such as facial / cranial bones. The benefits of modifying the strength of the material and adjusting the surface properties with fiber reinforcement and bone-bonding additives to meet the requirements of different bone qualities are still to be fully discovered.
Family-based dietary intervention in the STRIP study – influences on diet and diet-related attitudes
Resumo:
The focus of this dissertation was to investigate the effects of family-based dietary intervention during childhood and adolescence. The participants comprised of children and parents who participated in a longitudinal, randomised atherosclerosis prevention trial (STRIP study). The intervention families (n=540) took part in a dietary intervention since the child’s age of 8- months. The control group (n=522) did not receive any tailored dietary intervention. The main focus of the intervention was to improve the quality of dietary fat. The diet of children and parents was evaluated by daily food records and dietrelated attitudes by a questionnaire. The dietary intervention influenced, favourably, the dietary fat quality in children and parents. Fat quality improved mainly by the decrease of saturated fat intake. Some minor effects of the intervention were also observed in children’s fruit and vegetable (F&V) consumption although the F&V consumption was very low. The intervention increased parental interest in healthy eating, but there was no difference in interest in natural products or in attitudes towards hedonic eating attitudes between the intervention and control parents. Parents’ interest in healthy eating associated with parents’ and children’s high fruit and vegetable consumption but not with their fat quality ratio. On the other hand, dietary fat quality improved at every level of interest in healthy eating. It seems that the main target of the intervention, the dietary fat quality of the children, was promoted effectively. In the future, more emphasis should be given on increasing unsaturated fat intake and on elevating F&V consumption in children. Children’s diet, especially F&V consumption, associated with diet-related attitudes of the parents. Therefore, co-operation with parents and family-based premises for working should be capitalized upon when promoting healthy eating in children and adolescents.
Resumo:
Hystricognathi represent a monophyletic taxon within Rodentia. Since phylogenetically analyzed morphological systems are essential for revealing evolutionary processes, this study identifies evolutionary character transformations on the stem lineage of Hystricognathi as derived from the author's own work and the literature. Data so far indicate that evolutionary transformations in the rostral head region, the loss of tactile ability in the outer nasal skin and the mobile arrangement of the associated cartilage, were allied with a switch from omnivorous to herbivorous and fiber-rich nutrition. Additional character transformations in the skull assist in digesting such food. Structures associated with reproduction and placentation show a remarkable pro portion of derived character conditions: the chorioallantoic placenta has a ring-shaped organization and growth structure which optimizes the capacity for passive diffusion, a subplacenta occurred as a specialized region responsible for placental invasion and the inverted yolk sac facilitates substance exchange with the main placenta. Finally, precocial newborns evolved as a derived condition within Rodentia. All things considered, a mode of reproduction is indicated, which does not demand excessive additional energy intake by the mother and is in accordance with her low energetic diet. Hystricognathi possess major character transformations that represent prerequisites for their successful radiation at the time when more open ecosystems and grasslands evolved during Earth history. The analysis resulted in the reconstruction of a life-near picture of the hystricognath stem species pattern with high explanatory power in terms of changes in space and time and their interdependence with biodiversity.
Resumo:
In Finland, maternity and child health clinics play a key role in promoting health in young families. Currently, obesity causes the greatest challenges to clinics. In obese pregnant women, an increased risk for metabolic diseases exist which can affect both the mother and child. The purpose of this thesis was to explore the role of dietary counselling: in Finnish health clinics; in the regulation of dietary intake; and in affecting the body weight of women. The main aim was to test the effect of dietary counselling and probiotic intervention on dietary intake and maternal body weight during and after pregnancy. In addition to dietary counselling, the effect of other factors, such as eating behaviour on dietary intake and body weight control after pregnancy was assessed. Another aim was also to evaluate dietary counselling practices by nurses (n = 327) in Finnish health clinics assessed by a questionnaire. At the beginning of the pregnancy, women (n = 256) enrolled in a dietary intervention study, were randomised into three groups. One group received dietary counselling with probiotics, one had counselling with placebo and the third group was the control group. The control group consisted of women whom did not receive counselling and took placebo. Probiotics and placebo supplements were used until the end of exclusive breastfeeding or six months after pregnancy. Women were followed from early pregnancy up to four years after pregnancy. Follow-up visits took place three times during pregnancy, at one and six months, and one, two and four years after pregnancy. Dietary counselling, provided by a nutritionist, aimed to influence the quality of dietary fat intake. Dietary counselling is important to provide in clinics, as determined by the nurses, and these nurses expressed a want to improve their own nutritional knowledge through education. The nurses had varying knowledge of current dietary recommendations. Dietary counselling for women during and after pregnancy resulted in beneficial changes in dietary intake up to one year after pregnancy and body weight and waist circumference up to four years after pregnancy. Probiotics had a beneficial effect together with dietary counselling on waist circumference until one year after pregnancy, but not throughout the long term, four years after pregnancy. Other factors, such as eating behaviour, associated with dietary intake and body weight control after pregnancy. Specifically, dietary recommendations are reached amongst women whom had high cognitive restraint in their eating behaviour and did not demonstrate uncontrolled eating. Overweight women more frequently emotionally ate compared to normal weight women and women with central adiposity related more frequently to having an uncontrolled eating behaviour than women with normal waist circumference. In addition, being overweight prior to pregnancy and excessive weight gain during pregnancy associated with increased body weight retention after pregnancy. This study showed that individual dietary counselling is useful in influencing dietary intake which adheres to dietary recommendations and this counselling influences, favourably, body weight after pregnancy. Especially, women with the risk for weight retention, such as women who have emotional and uncontrolled eating behaviours, who were overweight prior to pregnancy or those who had excessive weight gain during pregnancy, may benefit from individual dietary counselling. This study underscores the need to develop dietary counselling practices for pregnant women and their follow-up after pregnancy in Finnish health clinics. These practices include increasing the efficacy of the counselling such as collaboration with families, having knowledgable health professionals and having sufficient resources.
Resumo:
In this experiment, methods of total fecal collection (TFC) and internal markers (acid-insoluble ash - AIA, crude fiber - CF, and acid-detergent fiber - ADF) were compared for determination of the coefficients of apparent digestibility (CAD) for dry matter (DM), crude protein (CP), ether extract (EE), nitrogen-free extracts (NFE), and gross energy (GE) of commercial feline dry kibble for ocelots (Leopardus pardalis). Six adult animals, weighing 12.45±1.37 kg, gradually received experimental kibble in their usual diet until the beginning of the experiment and were submitted to an adaptation period ten days prior to the collection period. CAD obtained by TFC, AIA, CF, and ADF were, respectively, 73.7, 76.83, 62.01, and 46.03% for dry matter; 81.9, 84.8, 75.8, and 63.8% for crude protein; 85, 86.7, 78.5, and 69.1% for ether extract; 78.52, 79.55, 69.11, and 53.04% for nitrogen-free extracts; and 80.5, 82.2, 71.4, and 58.4% for gross energy. The AIA method showed to be efficient in determining coefficients of apparent digestibility and may contribute to investigations on the digestibility of diets for wild felines. In comparison to the items of ocelot's usual diet, the kibble used in this paper provided an adequate nutritional supply with reduced daily costs per animal.
Resumo:
The Arctic region becoming very active area of the industrial developments since it may contain approximately 15-25% of the hydrocarbon and other valuable natural resources which are in great demand nowadays. Harsh operation conditions make the Arctic region difficult to access due to low temperatures which can drop below -50 °C in winter and various additional loads. As a result, newer and modified metallic materials are implemented which can cause certain problems in welding them properly. Steel is still the most widely used material in the Arctic regions due to high mechanical properties, cheapness and manufacturability. Moreover, with recent steel manufacturing development it is possible to make up to 1100 MPa yield strength microalloyed high strength steel which can be operated at temperatures -60 °C possessing reasonable weldability, ductility and suitable impact toughness which is the most crucial property for the Arctic usability. For many years, the arc welding was the most dominant joining method of the metallic materials. Recently, other joining methods are successfully implemented into welding manufacturing due to growing industrial demands and one of them is the laser-arc hybrid welding. The laser-arc hybrid welding successfully combines the advantages and eliminates the disadvantages of the both joining methods therefore produce less distortions, reduce the need of edge preparation, generates narrower heat-affected zone, and increase welding speed or productivity significantly. Moreover, due to easy implementation of the filler wire, accordingly the mechanical properties of the joints can be manipulated in order to produce suitable quality. Moreover, with laser-arc hybrid welding it is possible to achieve matching weld metal compared to the base material even with the low alloying welding wires without excessive softening of the HAZ in the high strength steels. As a result, the laser-arc welding methods can be the most desired and dominating welding technology nowadays, and which is already operating in automotive and shipbuilding industries with a great success. However, in the future it can be extended to offshore, pipe-laying, and heavy equipment industries for arctic environment. CO2 and Nd:YAG laser sources in combination with gas metal arc source have been used widely in the past two decades. Recently, the fiber laser sources offered high power outputs with excellent beam quality, very high electrical efficiency, low maintenance expenses, and higher mobility due to fiber optics. As a result, fiber laser-arc hybrid process offers even more extended advantages and applications. However, the information about fiber or disk laser-arc hybrid welding is very limited. The objectives of the Master’s thesis are concentrated on the study of fiber laser-MAG hybrid welding parameters in order to understand resulting mechanical properties and quality of the welds. In this work only ferrous materials are reviewed. The qualitative methodological approach has been used to achieve the objectives. This study demonstrates that laser-arc hybrid welding is suitable for welding of many types, thicknesses and strength of steels with acceptable mechanical properties along very high productivity. New developments of the fiber laser-arc hybrid process offers extended capabilities over CO2 laser combined with the arc. This work can be used as guideline in hybrid welding technology with comprehensive study the effect of welding parameter on joint quality.
Resumo:
Current methods for recording field potentials with tungsten electrodes make it virtually impossible to use the same recording electrode also as a lesioning electrode, for example for histological confirmation of the recorded site, because the lesioning procedure usually wears off the tungsten tip. Therefore, the electrode would have to be replaced after each lesioning procedure, which is a very high cost solution to the problem. We present here a low cost, easy to make, high quality glass pipette-carbon fiber microelectrode that shows resistive, signal/noise and electrochemical coupling advantages over tungsten electrodes. Also, currently used carbon fiber microelectrodes often show problems with electrical continuity, especially regarding electrochemical applications using a carbon-powder/resin mixture, with consequent low performance, besides the inconvenience of handling such a mixture. We propose here a new method for manufacturing glass pipette-carbon fiber microelectrodes with several advantages when recording intracerebral field potentials
Resumo:
This study evaluates the influence of different concentrations of calcium on blood pressure of normotensive rats. Four groups of Wistar rats (A, B, C and D) had free access to modified isocaloric and isoproteic diets containing 0.2, 0.5, 2 and 4 g% calcium as calcium carbonate for a period of 30 days. Systolic and diastolic arterial blood pressures were monitored in awake rats by the indirect tail cuff method using a Physiograph equipped with transducers and preamplifiers. Body weight and length and food intake were monitored. Under the conditions of the present experiment, the systolic and diastolic arterial blood pressures of group D rats fed a diet containing 4 g% calcium were significantly (P<0.05) lower compared to rats of the other groups.
Resumo:
Cancer patients present high mobilization of host protein, with a decrease in lean body mass and body fat depletion occurring in parallel to neoplastic growth. Since leucine is one of the principal amino acids used by skeletal muscle for energy, we investigated the changes in body composition of pregnant tumor-bearing rats after a leucine-supplemented diet. Sixty pregnant Wistar rats divided into six groups were fed a normal protein diet (18%, N) or a leucine-supplemented diet (3% L-leucine, L). The pregnant groups were: control (CN), Walker 256 carcinoma-bearing rats (WN), control rats pair-fed with tumor-bearing rats (pfN), leucine-supplemented (CL), leucine-supplemented tumor-bearing (WL), and leucine-supplemented rats pair-fed with tumor-bearing rats (pfL). At the end of pregnancy, all animals were sacrificed and body weight and tumor and fetal weight were determined. The carcasses were then analyzed for water, fat and total, collagen and non-collagen nitrogen content. Carcass weight was reduced in the WN, WL, pfN and pfL groups compared to control. The lean body mass and total carcass nitrogen were reduced in both tumor-bearing groups. Despite tumor growth and a decrease in fetal weight, there was a slight decrease in collagen (7%) and non-collagen nitrogen (8%) in the WL group compared with the WN group which showed a decrease of 8 and 12%, respectively. Although the WL group presented severe tumor growth effects, total carcass nitrogen and non-collagen nitrogen were particularly higher in this leucine-supplemented group compared to the WN group. These data suggest that the leucine-supplemented diet had a beneficial effect, probably attenuating body wasting.
Resumo:
The present prospective study was carried out to determine dietary fiber and energy intake and nutritional status of children during the treatment of chronic constipation. Twenty-five patients aged 2 to 12 years with chronic constipation were submitted to clinical evaluation, assessment of dietary patterns, and anthropometry before and after 45 and 90 days of treatment. The treatment of chronic constipation included rectal disimpaction, ingestion of mineral oil and diet therapy. The standardized diet prescribed consisted of regular food without a fiber supplement and met the nutrient requirements according to the recommended daily allowance. The fiber content was 9.0 to 11.9 g for patients aged less than 6 years and 12.0 to 18.0 g for patients older than 6 years. Sixteen patients completed the 90-day follow-up and all presented clinical improvement. The anthropometric variables did not change, except midarm circumference and triceps skinfold thickness which were significantly increased. Statistically significant increases were also found in percent calorie intake adequacy in terms of recommended daily allowance (55.5 to 76.5% on day 45 and to 68.5% on day 90; P = 0.047). Percent adequacy of minimum recommended daily intake of dietary fiber (age + 5 g) increased during treatment (from 46.8 to 52.8% on day 45 and to 56.3% on day 90; P = 0.009). Food and dietary fiber intake and triceps skinfold thickness increased during follow-up. We conclude that the therapeutic program provided a good clinical outcome.
Resumo:
Abnormal riboflavin status in the absence of a dietary deficiency was detected in 31 consecutive outpatients with Parkinson's disease (PD), while the classical determinants of homocysteine levels (B6, folic acid, and B12) were usually within normal limits. In contrast, only 3 of 10 consecutive outpatients with dementia without previous stroke had abnormal riboflavin status. The data for 12 patients who did not complete 6 months of therapy or did not comply with the proposed treatment paradigm were excluded from analysis. Nineteen PD patients (8 males and 11 females, mean age ± SD = 66.2 ± 8.6 years; 3, 3, 2, 5, and 6 patients in Hoehn and Yahr stages I to V) received riboflavin orally (30 mg every 8 h) plus their usual symptomatic medications and all red meat was eliminated from their diet. After 1 month the riboflavin status of the patients was normalized from 106.4 ± 34.9 to 179.2 ± 23 ng/ml (N = 9). Motor capacity was measured by a modification of the scoring system of Hoehn and Yahr, which reports motor capacity as percent. All 19 patients who completed 6 months of treatment showed improved motor capacity during the first three months and most reached a plateau while 5/19 continued to improve in the 3- to 6-month interval. Their average motor capacity increased from 44 to 71% after 6 months, increasing significantly every month compared with their own pretreatment status (P < 0.001, Wilcoxon signed rank test). Discontinuation of riboflavin for several days did not impair motor capacity and yellowish urine was the only side effect observed. The data show that the proposed treatment improves the clinical condition of PD patients. Riboflavin-sensitive mechanisms involved in PD may include glutathione depletion, cumulative mitochondrial DNA mutations, disturbed mitochondrial protein complexes, and abnormal iron metabolism. More studies are required to identify the mechanisms involved.
Resumo:
Cancer cachexia induces host protein wastage but the mechanisms are poorly understood. Branched-chain amino acids play a regulatory role in the modulation of both protein synthesis and degradation in host tissues. Leucine, an important amino acid in skeletal muscle, is higher oxidized in tumor-bearing animals. A leucine-supplemented diet was used to analyze the effects of Walker 256 tumor growth on body composition in young weanling Wistar rats divided into two main dietary groups: normal diet (N, 18% protein) and leucine-rich diet (L, 15% protein plus 3% leucine), which were further subdivided into control (N or L) or tumor-bearing (W or LW) subgroups. After 12 days, the animals were sacrificed and their carcass analyzed. The tumor-bearing groups showed a decrease in body weight and fat content. Lean carcass mass was lower in the W and LW groups (W = 19.9 ± 0.6, LW = 23.1 ± 1.0 g vs N = 29.4 ± 1.3, L = 28.1 ± 1.9 g, P < 0.05). Tumor weight was similar in both tumor-bearing groups fed either diet. Western blot analysis showed that myosin protein content in gastrocnemius muscle was reduced in tumor-bearing animals (W = 0.234 ± 0.033 vs LW = 0.598 ± 0.036, N = 0.623 ± 0.062, L = 0.697 ± 0.065 arbitrary intensity, P < 0.05). Despite accelerated tumor growth, LW animals exhibited a smaller reduction in lean carcass mass and muscle myosin maintenance, suggesting that excess leucine in the diet could counteract, at least in part, the high host protein wasting in weanling tumor-bearing rats.
Resumo:
The uncoupling protein UCP3 belongs to a family of mitochondrial carriers located in the inner mitochondrial membrane of certain cell types. It is expressed almost exclusively at high levels in skeletal muscle and its physiological role has not been fully determined in this tissue. In the present study we have addressed the possible interaction between a hypercaloric diet and thyroid hormone (T3), which are strong stimulators of UCP3 gene expression in skeletal muscle. Male Wistar rats weighing 180 ± 20 g were rendered hypothyroid by thyroidectomy and the addition of methimazole (0.05%; w/v) to drinking water after surgery. The rats were fed a hypercaloric cafeteria diet (68% carbohydrates, 13% protein and 18% lipids) for 10 days and sacrificed by decapitation. Subsequently, the gastrocnemius muscle was dissected, total RNA was isolated with Trizol and UCP3 gene expression was determined by Northern blotting using a specific probe. Statistical analysis was performed by one-way analysis of variance (ANOVA) followed by the Student-Newman-Keuls post-test. Skeletal muscle UCP3 gene expression was decreased by 60% in hypothyroid rats and UCP3 mRNA expression was increased 70% in euthyroid cafeteria-fed rats compared to euthyroid chow-fed animals, confirming previous studies. Interestingly, the cafeteria diet was unable to stimulate UCP3 gene expression in hypothyroid animals (40% lower as compared to euthyroid cafeteria-fed animals). The results show that a hypercaloric diet is a strong stimulator of UCP3 gene expression in skeletal muscle and requires T3 for an adequate action.
Resumo:
In the present study, we investigated the in vitro anti-tumoral activities of fractions from aqueous extracts of the husk fiber of the typical A and common varieties of Cocos nucifera (Palmae). Cytotoxicity against leukemia cells was determined by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. Cells (2 x 104/well) were incubated with 0, 5, 50 or 500 µg/mL high- or low-molecular weight fractions for 48 h, treated with MTT and absorbance was measured with an ELISA reader. The results showed that both varieties have almost similar antitumoral activity against the leukemia cell line K562 (60.1 ± 8.5 and 47.5 ± 11.9% for the typical A and common varieties, respectively). Separation of the crude extracts with Amicon membranes yielded fractions with molecular weights ranging in size from 1-3 kDa (fraction A) to 3-10 kDa (fraction B) and to more than 10 kDa (fraction C). Cells were treated with 500 µg/mL of these fractions and cytotoxicity was evaluated by MTT. Fractions ranging in molecular weight from 1-10 kDa had higher cytotoxicity. Interestingly, C. nucifera extracts were also active against Lucena 1, a multidrug-resistant leukemia cell line. Their cytotoxicity against this cell line was about 50% (51.9 ± 3.2 and 56.3 ± 2.9 for varieties typical A and common, respectively). Since the common C. nucifera variety is extensively cultured in Brazil and the husk fiber is its industrial by-product, the results obtained in the present study suggest that it might be a very inexpensive source of new antineoplastic and anti-multidrug resistant drugs that warrants further investigation.
Resumo:
C57BL/6 mice develop signs and symptoms comparable, in part, to the human metabolic syndrome. The objective of the present study was to evaluate the effects of exercise training on carbohydrate metabolism, lipid profile, visceral adiposity, pancreatic islet alterations, and nonalcoholic fatty liver disease in C57BL/6 mice. Animals were fed one of two diets during an 8-week period: standard (SC, N = 12) or very high-fat (HF, N = 24) chow. An exercise training protocol (treadmill) was then established and mice were divided into SC and HF sedentary (SC-Sed, HF-Sed), exercised groups (SC-Ex, HF-Ex), or switched from HF to SC (HF/SC-Sed and HF/SC-Ex). HF/HF-Sed mice had the greatest body mass (65% more than SC/SC-Sed; P < 0.0001), and exercise reduced it by 23% (P < 0.0001). Hepatic enzymes ALP (+80%), ALT (+100%) and AST (+70%) were higher in HF/HF mice than in matched SC/SC. Plasma insulin was higher in both the HF/HF-Sed and HF/SC-Sed groups than in the matched exercised groups (+85%; P < 0.001). Pancreatic islets, adipocytes and liver structure were greatly affected by HF, ultimately resulting in islet β-cell hypertrophy and severe liver steatosis. The HF group had larger islets than the SC/SC group (+220%; P < 0.0001), and exercise significantly reduced liver steatosis and islet size in HF. Exercise attenuated all the changes due to HF, and the effects were more pronounced in exercised mice switched from an HF to an SC diet. Exercise improved the lipid profile by reducing body weight gain, visceral adiposity, insulin resistance, islet alterations, and fatty liver, contributing to obesity and steatohepatitis control.