868 resultados para High-Intensity Interval Training
Resumo:
Aim. The purpose of the present study was to compare the effect of different resistance training systems (Multiple-set [MS] and Pyramid [P]) on hormonal, metabolic and perceptual markers of internal load. Methods. Ten healthy men performed two resistance training sessions (MS and P) which consisted of three exercises (bench press, peck deck and decline bench press) with the same total volume of load lifted. The training sessions were performed 14 days apart and allocated in a counter-balanced order. Hormonal (plasma insulin, growth hormone [GH], testosterone and cortisol) and metabolic (blood glucose and lactate) responses were assessed before and after each exercise bout. Session rating of perceived exertion (session RPE) was taken 30-min following each bout. Results. No difference was observed for session-RPE between P and MS bouts (P>0.05). Plasma GH, cortisol and lactate increased significantly after exercise both bouts (P<0.01), but there were no significant changes between MS and P (P>0.05). Conclusion. It is concluded that the acute bout of resistance exercise following MS and P systems provide similar training strain when the total volume of load lifted is matched.
Resumo:
Aims To test the effects of early exercise training (ET) on left ventricular (LV) and autonomic functions, haemodynamics, tissues blood flows (BFs), maximal oxygen consumption (VO(2) max), and mortality after myocardial infarction (MI) in rats. Methods and results Male Wistar rats were divided into: control (C), sedentary-infarcted (SI), and trained-infarcted (TI). One week after MI, TI group underwent an ET protocol (90 days, 50-70% VO2 max). Left ventricular function was evaluated noninvasively and invasively. Baroreflex sensitivity, heart rate variability, and pulse interval were measured. Cardiac output (CO) and regional BFs were determined using coloured microspheres. Infarcted area was reduced in TI (19 +/- 6%) compared with SI (34 +/- 5%) after ET. Exercise training improved the LV and autonomic functions, the CO and regional BF changes induced by MI, as well as increased SERCA2 expression and mRNA vascular endothelial growth factor levels. These changes brought about by ET resulted in mortality rate reduction in the TI (13%) group compared with the SI (54%) group. Conclusion Early aerobic ET reduced cardiac and peripheral dysfunctions and preserved cardiovascular autonomic control after MI in trained rats. Consequently, these ET-induced changes resulted in improved functional capacity and survival after MI.
Resumo:
The purpose of this study was to test the hypotheses that in obese children: 1) hypocaloric diet (D) improves both heart rate recovery at 1 min (Delta HRR1) cfter an exercise test, and cardiac autonomic nervous system activity (CANSA) in obese children; 2) Diet and exercise training (DET) combined leads to greater improvement in both Delta HRR1 after an exercise test and in CANSA, than D alone. Moreover, we examined the relationships among Delta HRR1, CANSA, cardiorespiratory fitness and anthropometric variables (AV) in obese children submitted to D and to DET. 33 obese children (10 +/- 0.2 years; body mass index (BMI) >95(th) percentile) were divided into 2 groups: D (n = 15; BMI = 31 +/- 1 kg/m(2)) and DET (n = 18; 29 +/- 1 kg/m(2)). All children performed a maximal cardiopulmonary exercise test on a treadmill. The Delta HRR1 was defined as the difference between heart rate at peak and at 1-min post-exercise. CANSA was assessed using power spectral analysis of heart rate variability at rest. The sympathovagal balance (low frequency and high frequency ratio, LF/HF) was measured. After interventions, all obese children showed reduced body weight (P < 0.05). The D group did not improve in terms of peak VO(2), Delta HRR1 or LF/HF ratio (P > 0.05). In contrast, the DET group showed increased peak VO(2) (P = 0.01) and improved Delta HRR1 (Delta HRR1 = 37.3 +/- 2.6; P = 0.01) and LF/HF ratio (P = 0.001). The DET group demonstrated significant relationships among Delta HRR1, peak VO(2) and CANSA (P < 0.05). In conclusion, DET, in contrast to D, promoted improved Delta HRR1 and CANSA in obese children, suggesting a positive influence of increased levels of cardiorespiratory fitness by exercise training on cardiac autonomic activity.
Resumo:
Previous studies show that exercise training and caloric restriction improve cardiac function in obesity. However, the molecular mechanisms underlying this effect on cardiac function remain unknown. Thus, we studied the effect of exercise training and/or caloric restriction on cardiac function and Ca(2+) handling protein expression in obese rats. To accomplish this goal, male rats fed with a high-fat and sucrose diet for 25 weeks were randomly assigned into 4 groups: high-fat and sucrose diet, high-fat and sucrose diet and exercise training, caloric restriction, and exercise training and caloric restriction. An additional lean group was studied. The study was conducted for 10 weeks. Cardiac function was evaluated by echocardiography and Ca(2+) handling protein expression by Western blotting. Our results showed that visceral fat mass, circulating leptin, epinephrine, and norepinephrine levels were higher in rats on the high-fat and sucrose diet compared with the lean rats. Cardiac nitrate levels, reduced/oxidized glutathione, left ventricular fractional shortening, and protein expression of phosphorylated Ser(2808)-ryanodine receptor and Thr(17-)phospholamban were lower in rats on the high-fat and sucrose diet compared with lean rats. Exercise training and/or caloric restriction prevented increases in visceral fat mass, circulating leptin, epinephrine, and norepinephrine levels and prevented reduction in cardiac nitrate levels and reduced: oxidized glutathione ratio. Exercise training and/or caloric restriction prevented reduction in left ventricular fractional shortening and in phosphorylation of the Ser(2808)-ryanodine receptor and Thr(17)-phospholamban. These findings show that exercise training and/or caloric restriction prevent cardiac dysfunction in high-fat and sucrose diet rats, which seems to be attributed to decreased circulating neurohormone levels. In addition, this nonpharmacological paradigm prevents a reduction in the Ser(2808)-ryanodine receptor and Thr(17-)phospholamban phosphorylation and redox status. (Hypertension. 2010;56:629-635.)
Resumo:
Exercise training is known to promote relevant changes in the properties of skeletal muscle contractility toward powerful fibers. However, there are few studies showing the effect of a well-established exercise training protocol on Ca(2+) handling and redox status in skeletal muscles with different fiber-type compositions. We have previously standardized a valid and reliable protocol to improve endurance exercise capacity in mice based on maximal lactate steady-state workload (MLSSw). The aim of this study was to investigate the effect of exercise training, performed at MLSSw, on the skeletal muscle Ca(2+) handling-related protein levels and cellular redox status in soleus and plantaris. Male C57BL/6J mice performed treadmill training at MLSSw over a period of eight weeks. Muscle fiber-typing was determined by myosin ATPase histochemistry, citrate synthase activity by spectrophotometric assay, Ca(2+) handling-related protein levels by Western blot and reduced to oxidized glutathione ratio (GSH:GSSG) by high-performance liquid chromatography. Trained mice displayed higher running performance and citrate synthase activity compared with untrained mice. Improved running performance in trained mice was paralleled by fast-to-slow fiber-type shift and increased capillary density in both plantaris and soleus. Exercise training increased dihydropyridine receptor (DHPR) alpha 2 subunit, ryanodine receptor and Na(+)/Ca(2+) exchanger levels in plantaris and soleus. Moreover, exercise training elevated DHPR beta 1 subunit and sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) 1 levels in plantaris and SERCA2 levels in soleus of trained mice. Skeletal muscle GSH content and GSH:GSSG ratio was increased in plantaris and soleus of trained mice. Taken together, our findings indicate that MLSSw exercise-induced better running performance is, in part, due to increased levels of proteins involved in skeletal muscle Ca(2+) handling, whereas this response is partially dependent on specificity of skeletal muscle fiber-type composition. Finally, we demonstrated an augmented cellular redox status and GSH antioxidant capacity in trained mice.
Resumo:
The purpose of this study was to investigate the effects of a short-term low-or high-carbohydrate (CHO) diet consumed after exercise on sympathetic nervous system activity. Twelve healthy males underwent a progressive incremental test; a control measurement of plasma catecholamines and heart rate variability (HRV); an exercise protocol to reduce endogenous CHO stores; a low-or high-CHO diet (counterbalanced order) consumed for 2 days, beginning immediately after the exercise protocol; and a second resting plasma catecholamine and HRV measurement. The exercise and diet protocols and the second round of measurements were performed again after a 1-week washout period. The mean (+/- SD) values of the standard deviation of R-R intervals were similar between conditions (control, 899.0 +/- 146.1 ms; low-CHO diet, 876.8 +/- 115.8 ms; and high-CHO diet, 878.7 +/- 127.7 ms). The absolute high-and low-frequency (HF and LF, respectively) densities of the HRV power spectrum were also not different between conditions. However, normalized HF and LF (i.e., relative to the total power spectrum) were lower and higher, respectively, in the low-CHO diet than in the control diet (mean +/- SD, 17 +/- 9 normalized units (NU) and 83 +/- 9 NU vs. 27 +/- 11 NU and 73 +/- 17 NU, respectively; p < 0.05). The LF/HF ratio was higher with the low-CHO diet than with the control diet (mean +/- SD, 7.2 +/- 6.2 and 4.2 +/- 3.2, respectively; p < 0.05). The mean values of plasma catecholamines were not different between diets. These results suggest that the autonomic control of the heart rate was modified after a short-term low-CHO diet, but plasma catecholamine levels were not altered.
Resumo:
The aim of the present study was to compare and correlate training impulse (TRIMP) estimates proposed by Banister (TRIMP(Banister)), Stagno (TRIMP(Stagno)) and Manzi (TRIMP(Manzi)). The subjects were submitted to an incremental test on cycle ergometer with heart rate and blood lactate concentration measurements. In the second occasion, they performed 30 min. of exercise at the intensity corresponding to maximal lactate steady state, and TRIMP(Banister), TRIMP(Stagno) and TRIMP(Manzi) were calculated. The mean values of TRIMP(Banister) (56.5 +/- 8.2 u.a.) and TRIMP(Stagno) (51.2 +/- 12.4 u.a.) were not different (P > 0.05) and were highly correlated (r = 0.90). Besides this, they presented a good agreement level, which means low bias and relatively narrow limits of agreement. On the other hand, despite highly correlated (r = 0.93), TRIMP(Stagno) and TRIMP(Manzi) (73.4 +/- 17.6 u.a.) were different (P < 0.05), with low agreement level. The TRIMP(Banister) e TRIMP(Manzi) estimates were not different (P = 0.06) and were highly correlated (r = 0.82), but showed low agreement level. Thus, we concluded that the investigated TRIMP methods are not equivalent. In practical terms, it seems prudent monitor the training process assuming only one of the estimates.
Resumo:
Moreira, A, Arsati, F, Cury, PR, Franciscon, C, Oliveira, PR, and Araujo, VC. Salivary immunoglobulin a response to a match in top-level brazilian soccer players. J Strength Cond Res 23(7): 1968-1973, 2009-It has been suggested that several parameters of mucosal immunity, including salivary immunoglobulin A (s-IgA), are affected by heavy exercise either in field sports or in the laboratory environment. Few observations have been made during a true sporting environment, particularly in professional soccer. We tested the hypothesis that salivary IgA levels will be decreased after a 70-minute regulation in a top-level professional soccer friendly match. Saliva samples from 24 male professional soccer players collected before and after the match were analyzed. Salivary immunoglobulin A concentration was measured by enzyme-linked immunosorbent assay and expressed as the absolute concentration (s-IgAabs), s-IgA relative to total protein concentration (IgA-Pro), and the secretion rate of IgA (s-IgArate). Rate of perceived exertion (RPE) was used to monitor the exercise intensity. The paired t-test showed no significant changes in s-IgAabs and s-IgArate (p > 0.05) from PRE to POST match. However, a significant (p < 0.05) increase in total protein concentration (1.46 +/- 0.4 to 2.00 +/- 07) and a decrease in IgA-Pro were observed. The best and most significant correlation was obtained with the RPE and changes in IgA-Pro (rs = -0.43) and could indicate that this expression may be an interesting marker of intensity in a soccer match. However, further investigation regarding exercise intensity, protein concentration, and immune suppression, particularly in team sports, is warranted. From a practical application, the variability of the responses among the players leads us to suggest that there is a need to individually analyze the results with team sports. Some athletes showed a decrease in s-IgA expressions, suggesting the need for taking protective actions to minimize contact with cold viruses or even reducing the training load.
Resumo:
This investigation examined the impact of a 17-d training period (that included basketball-specific training, sprints, intermittent running exercises, and weight training, prior to an international championship competition) on salivary immunoglobulin A (SIgA) levels in 10 subjects (athletes and staff members) from a national basketball team, as a biomarker for mucosal immune defence. Unstimulated saliva samples were collected at rest at the beginning of the preparation for the Pan American Games and 1 d before the first game. The recovery interval from the last bout of exercise was 4 h. The SIgA level was measured using enzyme-linked immunosorbent assay and expressed as absolute concentrations, secretion rate, and SIgA level relative to total protein. The decrease in SIgA levels following training was greater in athletes than in support staff; however, no significant differences between the two groups were detected. A decrease in SIgA level, regardless of the method used to express IgA results, was verified for athletes. Only one episode of upper respiratory tract illness symptoms was reported, and it was not associated with changes in SIgA levels. In summary, a situation of combined stress for an important championship was found to decrease the level of SIgA-mediated immune protection at the mucosal surface in team members, with greater changes observed in the athletes.
Resumo:
SILVA, B. M., F. J. NEVES, M. V. NEGRÃO, C. R. ALVES, R. G. DIAS, G. B. ALVES, A. C. PEREIRA, M. Urbana A. RONDON, J. E. KRIEGER, C. E. NEGRÃO, and A. C. DA NOBREGA. Endothelial Nitric Oxide Synthase Polymorphisms and Adaptation of Parasympathetic Modulation to Exercise Training. Med. Sci. Sports Exerc., Vol. 43, No. 9, pp. 1611-1618, 2011. Purpose: There is a large interindividual variation in the parasympathetic adaptation induced by aerobic exercise training, which may be partially attributed to genetic polymorphisms. Therefore, we investigated the association among three polymorphisms in the endothelial nitric oxide gene (-786T>C, 4b4a, and 894G>T), analyzed individually and as haplotypes, and the parasympathetic adaptation induced by exercise training. Methods: Eighty healthy males, age 20-35 yr, were genotyped by polymerase chain reaction-restriction fragment length polymorphism analysis, and haplotypes were inferred using the software PHASE 2.1. Autonomic modulation (i.e., HR variability and spontaneous baroreflex sensitivity) and peak oxygen consumption ((V) over dotO(2peak)) were measured before and after training (running, moderate to severe intensity, three times per week, 60 min.day(-1), during 18 wk). Results: Training increased (V) over dotO(2peak) (P < 0.05) and decreased mean arterial pressure (P < 0.05) in the whole sample. Subjects with the -786C polymorphic allele had a significant reduction in baroreflex sensitivity after training (change: wild type (-786TT) = 2% +/- 89% vs polymorphic (-786TC/CC) = -28% +/- 60%, median +/- quartile range, P = 0.03), and parasympathetic modulation was marginally reduced in subjects with the 894T polymorphic allele (change: wild type (894GG) = 8% +/- 67% vs polymorphic (894GT/TT) = -18% +/- 59%, median +/- quartile range, P = 0.06). Furthermore, parasympathetic modulation percent change was different between the haplotypes containing wild-type alleles(-786T/4b/894G) and polymorphic alleles at positions -786 and 894 (-786C/4b/894T) (-6% +/- 56% vs -41% +/- 50%, median T quartile range, P = 0.04). Conclusions: The polymorphic allele at position -786 and the haplotype containing polymorphic alleles at positions -786 and 894 in the endothelial nitric oxide gene were associated with decreased parasympathetic modulation after exercise training.
Resumo:
Negrão M.V, Alves CR, Alves G.B, Pereira A.C, Dias R.G, Laterza M.C, Mota G.F, Oliveira E.M, Bassaneze V, Krieger J.E, Negrão C.E, Rondon M.U.P. Exercise training improves muscle vasodilatation in individuals with T786C polymorphism of endothelial nitric oxide synthase gene. Physiol Genomics 42A: 71-77, 2010. First published July 6, 2010; doi:10.1152/physiolgenomics.00145.2009.-Allele T at promoter region of the eNOS gene has been associated with an increase in coronary disease mortality, suggesting that this allele increases susceptibility for endothelial dysfunction. In contrast, exercise training improves endothelial function. Thus, we hypothesized that: 1) Muscle vasodilatation during exercise is attenuated in individuals homozygous for allele T, and 2) Exercise training improves muscle vasodilatation in response to exercise for TT genotype individuals. From 133 preselected healthy individuals genotyped for the T786C polymorphism, 72 participated in the study: TT (n = 37; age 27 +/- 1 yr) and CT + CC (n = 35; age 26 +/- 1 yr). Forearm blood flow (venous occlusion plethysmography) and blood pressure (oscillometric automatic cuff) were evaluated at rest and during 30% handgrip exercise. Exercise training consisted of three sessions per week for 18 wk, with intensity between anaerobic threshold and respiratory compensation point. Resting forearm vascular conductance (FVC, P = 0.17) and mean blood pressure (P = 0.70) were similar between groups. However, FVC responses during handgrip exercise were significantly lower in TT individuals compared with CT + CC individuals (0.39 +/- 0.12 vs. 1.08 +/- 0.27 units, P = 0.01). Exercise training significantly increased peak VO(2) in both groups, but resting FVC remained unchanged. This intervention significantly increased FVC response to handgrip exercise in TT individuals (P = 0.03), but not in CT + CC individuals (P = 0.49), leading to an equivalent FVC response between TT and CT + CC individuals (1.05 +/- 0.18 vs. 1.59 +/- 0.27 units, P = 0.27). In conclusion, exercise training improves muscle vasodilatation in response to exercise in TT genotype individuals, demonstrating that genetic variants influence the effects of interventions such as exercise training.
Resumo:
Objective: To analyse the effects of strength training (ST) in walking capacity in patients with intermittent claudication (IC) compared with walking training (WT) effects. Methods. Thirty patients with IC were randomized into ST and WT. Both groups trained twice a week for 12 weeks at the same rate of perceived exertion. ST consisted of three sets of 10 repetitions of whole body exercises. WT consisted of 15 bouts of 2-minute walking. Before and after the training program walking capacity, peak VO(2), VO(2) at the first stage of treadmill test, ankle brachial index, ischemic window, and knee extension strength were measured. Results: ST improved initial claudication distance (358 +/- 224 vs 504 +/- 276 meters; P < .01), total walking distance (618 +/- 282 to 775 +/- 334 meters; P < .01), VO(2), at the first stage of treadmill test (9.7 +/- 2.6 vs 8.1 +/- 1.7 mL . kg(-1) . minute; P < .01), ischemic window (0.81 +/- 1.16 vs 0.43 +/- 0.47 mm Hg minute meters(-1); P = .04), and knee extension strength (19 +/- 9 vs 21 +/- 8 kg and 21 +/- 9 vs 23 +/- 9; P < .01). Strength increases correlated with the increase in initial claudication distance (r = 0.64; P = .01.) and with the decrease ill VO(2) measured at the first stage of the treadmill test (r = -0.52; P = .04 and r = -0.55; P = .03). Adaptations following ST were similar to the ones observed after WT; however, patients reported lower pain during ST than WT (P < .01). Conclusion: ST improves functional limitation similarly to WT but it produces lower pain, suggesting that this type of exercise could be useful and should be considered in patients with IC. (J Vase Surg 2010;51:89-95.)
Resumo:
PURPOSE: Walking training is considered as the first treatment option for patients with peripheral arterial disease and intermittent claudication (IC). Walking exercise has been prescribed for these patients by relative intensity of peak oxygen uptake (VO(2)peak), ranging from 40% to 70% VO(2)peak, or pain threshold (PT). However, the relationship between these methods and anaerobic threshold (AT), which is considered one of the best metabolic markers for establishing training intensity, has not been analyzed. Thus, the aim of this study was to compare, in IC patients, the physiological responses at exercise intensities usually prescribed for training (% VO(2) peak or % PT) with the ones observed at AT. METHODS: Thirty-three IC patients performed maximal graded cardiopulmonary treadmill test to assess exercise tolerance. During the test, heart rate (HR), VO(2), and systolic blood pressure were measured and responses were analyzed at the following: 40% of VO(2)peak; 70% of VO(2)peak; AT; and PT. RESULTS: Heart rate and VO(2) at 40% and 70% of VO(2)peak were lower than those at AT (HR: -13 +/- 9% and -3 +/- 8%, P < .01, respectively; VO(2): -52 +/- 12% and -13 +/- 15%, P < .01, respectively). Conversely, HR and VO(2) at PT were slightly higher than those at AT (HR: +3 +/- 8%, P < .01; VO(2): + 6 +/- 15%, P = .04). None of the patients achieved the respiratory compensation point. CONCLUSION: Prescribing exercise for IC patients between 40% and 70% of VO(2)peak will induce a lower stimulus than that at AT, whereas prescribing exercise at PT will result in a stimulus above AT. Thus, prescribing exercise training for IC patients on the basis of PT will probably produce a greater metabolic stimulus, promoting better cardiovascular benefits.
Resumo:
Soci UPR, Fernandes T, Hashimoto NY, Mota GF, Amadeu MA, Rosa KT, Irigoyen MC, Phillips MI, Oliveira EM. MicroRNAs 29 are involved in the improvement of ventricular compliance promoted by aerobic exercise training in rats. Physiol Genomics 43: 665-673, 2011. First published March 29, 2011; doi:10.1152/physiolgenomics.00145.2010.-MiRNAs regulate cardiac development, hypertrophy, and angiogenesis, but their role in cardiac hypertrophy (CH) induced by aerobic training has not previously been studied. Aerobic training promotes physiological CH preserving cardiac function. This study assessed involvement of miRNAs-29 in CH of trained rats. Female Wistar rats (n = 7/group) were randomized into three groups: sedentary (S), training 1 (T1), training 2 (T2). T1: swimming sessions of 60 min/5 days/wk/10 wk. T2: similar to T1 until 8th wk. On the 9th wk rats swam 2x/day, and on the 10th wk 3x/day. MiRNAs analysis was performed by miRNA microarray and confirmed by real-time PCR. We assessed: markers of training, CH by ratio of left ventricle (LV) weight/body wt and cardiomyocytes diameter, pathological markers of CH (ANF, skeletal alpha-actin, alpha/beta-MHC), collagen I and III (COLIAI and COLIIIAI) by real-time PCR, protein collagen by hydroxyproline (OH-proline) concentration, CF and CH by echocardiography. Training improved aerobic capacity and induced CH. MiRNAs-1, 133a, and 133b were downregulated as observed in pathological CH, however, without pathological markers. MiRNA-29c expression increased in T1 (52%) and T2 (123%), correlated with a decrease in COLIAI and COLIIIAI expression in T1 (27%, 38%) and T2 (33%, 48%), respectively. MiRNA-29c was inversely correlated to OH-proline concentration (r = 0.61, P = 0.05). The E/A ratio increased in T2, indicating improved LV compliance. Thus, these results show that aerobic training increase miR-29 expression and decreased collagen gene expression and concentration in the heart, which is relevant to the improved LV compliance and beneficial cardiac effects, associated with aerobic high performance training.
Resumo:
Obesity-induced endoplasmatic reticulum (ER) stress has been demonstrated to underlie the induction of obesity-induced JNK and NF-kappa B activation inflammatory responses, and generation of peripheral insulin resistance. On the other hand, exercise has been used as a crucial tool in obese and diabetic patients, and may reduce inflammatory pathway stimulation. However, the ability of exercise training to reverse endoplasmatic reticulum stress in adipose and hepatic tissue in obesity has not been investigated in the literature. Here, we demonstrate that exercise training ameliorates ER stress and insulin resistance in DIO-induced rats. Rats were fed with standard rodent chow (3,948 kcal kg(-1)) or high-fat diet (5,358 kcal kg(-1)) for 2 months. After that rats were submitted to swimming training (1 h per day, 5 days for week with 5% overload of the body weight for 8 weeks). Samples from epididymal fat and liver were obtained and western blot analysis was performed. Our results showed that swimming protocol reduces pro-inflammatory molecules (JNK, I kappa B and NF-kappa B) in adipose and hepatic tissues. In addition, exercise leads to reduction in ER stress, by reducing PERK and eIF2 alpha phosphorylation in these tissues. In parallel, an increase in insulin pathway signaling was observed, as confirmed by increases in IR, IRSs and Akt phosphorylation following exercise training in DIO rats. Thus, results suggest that exercise can reduce ER stress, improving insulin resistance in adipose and hepatic tissue.