895 resultados para Hierarchical task analysis
Resumo:
One of the main process features under study in Cognitive Translation & Interpreting Studies (CTIS) is the chronological unfolding of the tasks. The analyses of time spans in translation have been conceived in two ways: (1) studying those falling between text units of different sizes: words, phrases, sentences, and paragraphs; (2) setting arbitrary time span thresholds to explore where do they fall in the text, whether between text units or not. Writing disfluencies may lead to comprehensive insights into the cognitive activities involved in typing while translating. Indeed, long time spans are often taken as hints that cognitive resources have been subtracted from typing and devoted to other activities, such as planning, evaluating, etc. This exploratory, pilot study combined both approaches to seek potential general tendencies and contrasts in informants’ inferred mental processes when performing different writing tasks, through the analysis of their behaviors, as keylogged. The study tasks were retyping, monolingual free writing, translation, revision and a multimodal task—namely, monolingual text production based on an infographic leaflet. Task logs were chunked, and shorter time spans, including those within words, were analyzed following the Task Segment Framework (Muñoz & Apfelthaler, in press). Finally, time span analysis was combined with the analysis of the texts as to their lexical density, type-token ratio and word frequency. Several previous results were confirmed, and some others were surprising. Time spans in free writing were longer between paragraphs and sentences, possibly hinting at planning and, in translation, between clauses and words, suggesting more cognitive activities at these levels. On the other hand, the infographic was expected to facilitate the writing process, but most time spans were longer than in both free writing and translation. Results of the multimodal task and some other results suggest venues for further research.
Resumo:
Collecting and analysing data is an important element in any field of human activity and research. Even in sports, collecting and analyzing statistical data is attracting a growing interest. Some exemplar use cases are: improvement of technical/tactical aspects for team coaches, definition of game strategies based on the opposite team play or evaluation of the performance of players. Other advantages are related to taking more precise and impartial judgment in referee decisions: a wrong decision can change the outcomes of important matches. Finally, it can be useful to provide better representations and graphic effects that make the game more engaging for the audience during the match. Nowadays it is possible to delegate this type of task to automatic software systems that can use cameras or even hardware sensors to collect images or data and process them. One of the most efficient methods to collect data is to process the video images of the sporting event through mixed techniques concerning machine learning applied to computer vision. As in other domains in which computer vision can be applied, the main tasks in sports are related to object detection, player tracking, and to the pose estimation of athletes. The goal of the present thesis is to apply different models of CNNs to analyze volleyball matches. Starting from video frames of a volleyball match, we reproduce a bird's eye view of the playing court where all the players are projected, reporting also for each player the type of action she/he is performing.
Resumo:
This dissertation contributes to the scholarly debate on temporary teams by exploring team interactions and boundaries.The fundamental challenge in temporary teams originates from temporary participation in the teams. First, as participants join the team for a short period of time, there is not enough time to build trust, share understanding, and have effective interactions. Consequently, team outputs and practices built on team interactions become vulnerable. Secondly, as team participants move on and off the teams, teams’ boundaries become blurred over time. It leads to uncertainty among team participants and leaders about who is/is not identified as a team member causing collective disagreement within the team. Focusing on the above mentioned challenges, we conducted this research in healthcare organisations since the use of temporary teams in healthcare and hospital setting is prevalent. In particular, we focused on orthopaedic teams that provide personalised treatments for patients using 3D printing technology. Qualitative and quantitative data were collected using interviews, observations, questionnaires and archival data at Rizzoli Orthopaedic Institute, Bologna, Italy. This study provides the following research outputs. The first is a conceptual study that explores temporary teams’ literature using bibliometric analysis and systematic literature review to highlight research gaps. The second paper qualitatively studies temporary relationships within the teams by collecting data using group interviews and observations. The results highlighted the role of short-term dyadic relationships as a ground to share and transfer knowledge at the team level. Moreover, hierarchical structure of the teams facilitates knowledge sharing by supporting dyadic relationships within and beyond the team meetings. The third paper investigates impact of blurred boundaries on temporary teams’ performance. Using quantitative data collected through questionnaires and archival data, we concluded that boundary blurring in terms of fluidity, overlap and dispersion differently impacts team performance at high and low levels of task complexity.
Assessing brain connectivity through electroencephalographic signal processing and modeling analysis
Resumo:
Brain functioning relies on the interaction of several neural populations connected through complex connectivity networks, enabling the transmission and integration of information. Recent advances in neuroimaging techniques, such as electroencephalography (EEG), have deepened our understanding of the reciprocal roles played by brain regions during cognitive processes. The underlying idea of this PhD research is that EEG-related functional connectivity (FC) changes in the brain may incorporate important neuromarkers of behavior and cognition, as well as brain disorders, even at subclinical levels. However, a complete understanding of the reliability of the wide range of existing connectivity estimation techniques is still lacking. The first part of this work addresses this limitation by employing Neural Mass Models (NMMs), which simulate EEG activity and offer a unique tool to study interconnected networks of brain regions in controlled conditions. NMMs were employed to test FC estimators like Transfer Entropy and Granger Causality in linear and nonlinear conditions. Results revealed that connectivity estimates reflect information transmission between brain regions, a quantity that can be significantly different from the connectivity strength, and that Granger causality outperforms the other estimators. A second objective of this thesis was to assess brain connectivity and network changes on EEG data reconstructed at the cortical level. Functional brain connectivity has been estimated through Granger Causality, in both temporal and spectral domains, with the following goals: a) detect task-dependent functional connectivity network changes, focusing on internal-external attention competition and fear conditioning and reversal; b) identify resting-state network alterations in a subclinical population with high autistic traits. Connectivity-based neuromarkers, compared to the canonical EEG analysis, can provide deeper insights into brain mechanisms and may drive future diagnostic methods and therapeutic interventions. However, further methodological studies are required to fully understand the accuracy and information captured by FC estimates, especially concerning nonlinear phenomena.
Resumo:
This thesis explores the methods based on the free energy principle and active inference for modelling cognition. Active inference is an emerging framework for designing intelligent agents where psychological processes are cast in terms of Bayesian inference. Here, I appeal to it to test the design of a set of cognitive architectures, via simulation. These architectures are defined in terms of generative models where an agent executes a task under the assumption that all cognitive processes aspire to the same objective: the minimization of variational free energy. Chapter 1 introduces the free energy principle and its assumptions about self-organizing systems. Chapter 2 describes how from the mechanics of self-organization can emerge a minimal form of cognition able to achieve autopoiesis. In chapter 3 I present the method of how I formalize generative models for action and perception. The architectures proposed allow providing a more biologically plausible account of more complex cognitive processing that entails deep temporal features. I then present three simulation studies that aim to show different aspects of cognition, their associated behavior and the underlying neural dynamics. In chapter 4, the first study proposes an architecture that represents the visuomotor system for the encoding of actions during action observation, understanding and imitation. In chapter 5, the generative model is extended and is lesioned to simulate brain damage and neuropsychological patterns observed in apraxic patients. In chapter 6, the third study proposes an architecture for cognitive control and the modulation of attention for action selection. At last, I argue how active inference can provide a formal account of information processing in the brain and how the adaptive capabilities of the simulated agents are a mere consequence of the architecture of the generative models. Cognitive processing, then, becomes an emergent property of the minimization of variational free energy.
Resumo:
Earthquake prediction is a complex task for scientists due to the rare occurrence of high-intensity earthquakes and their inaccessible depths. Despite this challenge, it is a priority to protect infrastructure, and populations living in areas of high seismic risk. Reliable forecasting requires comprehensive knowledge of seismic phenomena. In this thesis, the development, application, and comparison of both deterministic and probabilistic forecasting methods is shown. Regarding the deterministic approach, the implementation of an alarm-based method using the occurrence of strong (fore)shocks, widely felt by the population, as a precursor signal is described. This model is then applied for retrospective prediction of Italian earthquakes of magnitude M≥5.0,5.5,6.0, occurred in Italy from 1960 to 2020. Retrospective performance testing is carried out using tests and statistics specific to deterministic alarm-based models. Regarding probabilistic models, this thesis focuses mainly on the EEPAS and ETAS models. Although the EEPAS model has been previously applied and tested in some regions of the world, it has never been used for forecasting Italian earthquakes. In the thesis, the EEPAS model is used to retrospectively forecast Italian shallow earthquakes with a magnitude of M≥5.0 using new MATLAB software. The forecasting performance of the probabilistic models was compared to other models using CSEP binary tests. The EEPAS and ETAS models showed different characteristics for forecasting Italian earthquakes, with EEPAS performing better in the long-term and ETAS performing better in the short-term. The FORE model based on strong precursor quakes is compared to EEPAS and ETAS using an alarm-based deterministic approach. All models perform better than a random forecasting model, with ETAS and FORE models showing better performance. However, to fully evaluate forecasting performance, prospective tests should be conducted. The lack of objective tests for evaluating deterministic models and comparing them with probabilistic ones was a challenge faced during the study.
Resumo:
Frame. Assessing the difficulty of source texts and parts thereof is important in CTIS, whether for research comparability, for didactic purposes or setting price differences in the market. In order to empirically measure it, Campbell & Hale (1999) and Campbell (2000) developed the Choice Network Analysis (CNA) framework. Basically, the CNA’s main hypothesis is that the more translation options (a group of) translators have to render a given source text stretch, the higher the difficulty of that text stretch will be. We will call this the CNA hypothesis. In a nutshell, this research project puts the CNA hypothesis to the test and studies whether it does actually measure difficulty. Data collection. Two groups of participants (n=29) of different profiles and from two universities in different countries had three translation tasks keylogged with Inputlog, and filled pre- and post-translation questionnaires. Participants translated from English (L2) into their L1s (Spanish or Italian), and worked—first in class and then at home—using their own computers, on texts ca. 800–1000 words long. Each text was translated in approximately equal halves in two 1-hour sessions, in three consecutive weeks. Only the parts translated at home were considered in the study. Results. A very different picture emerged from data than that which the CNA hypothesis might predict: there was no prevalence of disfluent task segments when there were many translation options, nor was a prevalence of fluent task segments associated to fewer translation options. Indeed, there was no correlation between the number of translation options (many and few) and behavioral fluency. Additionally, there was no correlation between pauses and both behavioral fluency and typing speed. The discussed theoretical flaws and the empirical evidence lead to the conclusion that the CNA framework does not and cannot measure text and translation difficulty.
Resumo:
This thesis contributes to the ArgMining 2021 shared task on Key Point Analysis. Key Point Analysis entails extracting and calculating the prevalence of a concise list of the most prominent talking points, from an input corpus. These talking points are usually referred to as key points. Key point analysis is divided into two subtasks: Key Point Matching, which involves assigning a matching score to each key point/argument pair, and Key Point Generation, which consists of the generation of key points. The task of Key Point Matching was approached using different models: a pretrained Sentence Transformers model and a tree-constrained Graph Neural Network were tested. The best model was the fine-tuned Sentence Transformers, which achieved a mean Average Precision score of 0.75, ranking 12 compared to other participating teams. The model was then used for the subtask of Key Point Generation using the extractive method in the selection of key point candidates and the model developed for the previous subtask to evaluate them.
Resumo:
Wireless power transfer is becoming a crucial and demanding task in the IoT world. Despite the already known solutions exploiting a near-field powering approach, far-field WPT is definitely more challenging, and commercial applications are not available yet. This thesis proposes the recent frequency-diverse array technology as a potential candidate for realizing smart and reconfigurable far-field WPT solutions. In the first section of this work, an analysis on some FDA systems is performed, identifying the planar array with circular geometry as the most promising layout in terms of radiation properties. Then, a novel energy aware solution to handle the critical time variability of the FDA beam pattern is proposed. It consists on a time-control strategy through a triangular pulse, and it allows to achieve ad-hoc and real time WPT. Moreover, an essential frequency domain analysis of the radiating behaviour of a pulsed FDA system is presented. This study highlights the benefits of exploiting the intrinsic pulse harmonics for powering purposes, thus minimising the power loss. Later, the electromagnetic design of a radial FDA architecture is addressed. In this context, an exhaustive investigation on miniaturization techniques is carried out; the use of multiple shorting pins together with a meandered feeding network has been selected as a powerful solution to halve the original prototype dimension. Finally, accurate simulations of the designed radial FDA system are performed, and the obtained results are given.
Resumo:
In this thesis we address a multi-label hierarchical text classification problem in a low-resource setting and explore different approaches to identify the best one for our case. The goal is to train a model that classifies English school exercises according to a hierarchical taxonomy with few labeled data. The experiments made in this work employ different machine learning models and text representation techniques: CatBoost with tf-idf features, classifiers based on pre-trained models (mBERT, LASER), and SetFit, a framework for few-shot text classification. SetFit proved to be the most promising approach, achieving better performance when during training only a few labeled examples per class are available. However, this thesis does not consider all the hierarchical taxonomy, but only the first two levels: to address classification with the classes at the third level further experiments should be carried out, exploring methods for zero-shot text classification, data augmentation, and strategies to exploit the hierarchical structure of the taxonomy during training.
Resumo:
Artificial Intelligence (AI) is gaining ever more ground in every sphere of human life, to the point that it is now even used to pass sentences in courts. The use of AI in the field of Law is however deemed quite controversial, as it could provide more objectivity yet entail an abuse of power as well, given that bias in algorithms behind AI may cause lack of accuracy. As a product of AI, machine translation is being increasingly used in the field of Law too in order to translate laws, judgements, contracts, etc. between different languages and different legal systems. In the legal setting of Company Law, accuracy of the content and suitability of terminology play a crucial role within a translation task, as any addition or omission of content or mistranslation of terms could entail legal consequences for companies. The purpose of the present study is to first assess which neural machine translation system between DeepL and ModernMT produces a more suitable translation from Italian into German of the atto costitutivo of an Italian s.r.l. in terms of accuracy of the content and correctness of terminology, and then to assess which translation proves to be closer to a human reference translation. In order to achieve the above-mentioned aims, two human and automatic evaluations are carried out based on the MQM taxonomy and the BLEU metric. Results of both evaluations show an overall better performance delivered by ModernMT in terms of content accuracy, suitability of terminology, and closeness to a human translation. As emerged from the MQM-based evaluation, its accuracy and terminology errors account for just 8.43% (as opposed to DeepL’s 9.22%), while it obtains an overall BLEU score of 29.14 (against DeepL’s 27.02). The overall performances however show that machines still face barriers in overcoming semantic complexity, tackling polysemy, and choosing domain-specific terminology, which suggests that the discrepancy with human translation may still be remarkable.
Resumo:
The Fourier transform-infrared (FT-IR) signature of dry samples of DNA and DNA-polypeptide complexes, as studied by IR microspectroscopy using a diamond attenuated total reflection (ATR) objective, has revealed important discriminatory characteristics relative to the PO2(-) vibrational stretchings. However, DNA IR marks that provide information on the sample's richness in hydrogen bonds have not been resolved in the spectral profiles obtained with this objective. Here we investigated the performance of an all reflecting objective (ARO) for analysis of the FT-IR signal of hydrogen bonds in DNA samples differing in base richness types (salmon testis vs calf thymus). The results obtained using the ARO indicate prominent band peaks at the spectral region representative of the vibration of nitrogenous base hydrogen bonds and of NH and NH2 groups. The band areas at this spectral region differ in agreement with the DNA base richness type when using the ARO. A peak assigned to adenine was more evident in the AT-rich salmon DNA using either the ARO or the ATR objective. It is concluded that, for the discrimination of DNA IR hydrogen bond vibrations associated with varying base type proportions, the use of an ARO is recommended.
Resumo:
Although various abutment connections and materials have recently been introduced, insufficient data exist regarding the effect of stress distribution on their mechanical performance. The purpose of this study was to investigate the effect of different abutment materials and platform connections on stress distribution in single anterior implant-supported restorations with the finite element method. Nine experimental groups were modeled from the combination of 3 platform connections (external hexagon, internal hexagon, and Morse tapered) and 3 abutment materials (titanium, zirconia, and hybrid) as follows: external hexagon-titanium, external hexagon-zirconia, external hexagon-hybrid, internal hexagon-titanium, internal hexagon-zirconia, internal hexagon-hybrid, Morse tapered-titanium, Morse tapered-zirconia, and Morse tapered-hybrid. Finite element models consisted of a 4×13-mm implant, anatomic abutment, and lithium disilicate central incisor crown cemented over the abutment. The 49 N occlusal loading was applied in 6 steps to simulate the incisal guidance. Equivalent von Mises stress (σvM) was used for both the qualitative and quantitative evaluation of the implant and abutment in all the groups and the maximum (σmax) and minimum (σmin) principal stresses for the numerical comparison of the zirconia parts. The highest abutment σvM occurred in the Morse-tapered groups and the lowest in the external hexagon-hybrid, internal hexagon-titanium, and internal hexagon-hybrid groups. The σmax and σmin values were lower in the hybrid groups than in the zirconia groups. The stress distribution concentrated in the abutment-implant interface in all the groups, regardless of the platform connection or abutment material. The platform connection influenced the stress on abutments more than the abutment material. The stress values for implants were similar among different platform connections, but greater stress concentrations were observed in internal connections.
Resumo:
Current guidelines have advised against the performance of (131)I-iodide diagnostic whole body scintigraphy (dxWBS) to minimize the occurrence of stunning, and to guarantee the efficiency of radioiodine therapy (RIT). The aim of the study was to evaluate the impact of stunning on the efficacy of RIT and disease outcome. This retrospective analysis included 208 patients with differentiated thyroid cancer managed according to a same protocol and followed up for 12-159 months (mean 30 ± 69 months). Patients received RIT in doses ranging from 3,700 to 11,100 MBq (100 mCi to 300 mCi). Post-RIT-whole body scintigraphy images were performed 10 days after RIT in all patients. In addition, images were also performed 24-48 hours after therapy in 22 patients. Outcome was classified as no evidence of disease (NED), stable disease (SD) and progressive disease (PD). Thyroid stunning occurred in 40 patients (19.2%), including 26 patients with NED and 14 patients with SD. A multivariate analysis showed no association between disease outcome and the occurrence of stunning (p = 0.3476). The efficacy of RIT and disease outcome do not seem to be related to thyroid stunning.
Resumo:
We report on a new analysis of neutrino oscillations in MINOS using the complete set of accelerator and atmospheric data. The analysis combines the ν(μ) disappearance and ν(e) appearance data using the three-flavor formalism. We measure |Δm(32)(2)| = [2.28-2.46] × 10(-3) eV(2) (68% C.L.) and sin(2)θ(23) = 0.35-0.65 (90% C.L.) in the normal hierarchy, and |Δm(32)(2)| = [2.32-2.53] × 10(-3) eV(2) (68% C.L.) and sin(2)θ(23) = 0.34-0.67 (90% C.L.) in the inverted hierarchy. The data also constrain δ(CP), the θ(23} octant degeneracy and the mass hierarchy; we disfavor 36% (11%) of this three-parameter space at 68% (90%) C.L.