898 resultados para HAMILTONIAN-FORMULATION
Resumo:
The available wind power is stochastic and requires appropriate tools in the OPF model for economic and reliable power system operation. This paper exhibit the OPF formulation with factors involved in the intermittency of wind power. Weibull distribution is adopted to find the stochastic wind speed and power distribution. The reserve requirement is evaluated based on the wind distribution and risk of under/over estimation of the wind power. In addition, the Wind Energy Conversion System (WECS) is represented by Doubly Fed Induction Generator (DFIG) based wind farms. The reactive power capability for DFIG based wind farm is also analyzed. The study is performed on IEEE-30 bus system with wind farm located at different buses and with different wind profiles. Also the reactive power capacity to be installed in the wind farm to maintain a satisfactory voltage profile under the various wind flow scenario is demonstrated.
Resumo:
This book was written to serve two functions. First it is an exploration of what I have called Socratic pedagogy, a collaborative inquiry-based approach to teaching and learning suitable not only to formal educational settings such as the school classroom but to all educational settings. The term is intended to capture a variety of philosophical approaches to classroom practice that could broadly be described Socratic in form. The term ‘philosophy in schools’ is ambiguous and could refer to teaching university style philosophy to high school students or to the teaching of philosophy and logic or critical reasoning in senior years of high school. It is also used to describe the teaching of philosophy in schools generally. In the early and middle phases of schooling the term philosophy for children is often used. But this too is ambiguous as the name was adopted from Matthew Lipman’s Philosophy for Children curriculum that he and his colleagues at the Institute for the Advancement of Philosophy for Children developed. In Britain the term ‘philosophy with children’ is sometimes employed to mark two methods of teaching that have Socratic roots but have distinct differences, namely Philosophy for Children and Socratic Dialogue developed by Leonard Nelson. The use of the term Socratic pedagogy and its companion term Socratic classroom (to refer to the kind of classroom that employs Socratic teaching) avoids the problem of distinguishing between various approaches to philosophical inquiry in the Socratic tradition but also separates it from the ‘study of philosophy’, such as university style philosophy or other approaches which place little or no emphasis on collaborative inquiry based teaching and learning. The second function builds from the first. It is to develop an effective framework for understanding the relationship between what I call the generative, evaluative and connective aspects of communal dialogue, which I think are necessary to the Socratic notion of inquiry. In doing so it is hoped that this book offers some way to show how philosophy as inquiry can contribute to educational theory and practice, while also demonstrating how it can be an effective way to approach teaching and learning. This has meant striking a balance between speaking to philosophers and to teachers and educators together, with the view that both see the virtues of such a project. In the strictest sense this book is not philosophy of education, insofar as its chief focus is not on the analysis of concepts or formulation of definitions specific to education with the aim of formulating directives that guide educational practice. It relinquishes the role of philosopher as ‘spectator’, to one of philosopher ‘immersed in matter’ – in this case philosophical issues in education, specifically those related to philosophical inquiry, pedagogy and classroom practice. Put another way, it is a book about philosophical education.
Resumo:
A new dualscale modelling approach is presented for simulating the drying of a wet hygroscopic porous material that couples the porous medium (macroscale) with the underlying pore structure (microscale). The proposed model is applied to the convective drying of wood at low temperatures and is valid in the so-called hygroscopic range, where hygroscopically held liquid water is present in the solid phase and water exits only as vapour in the pores. Coupling between scales is achieved by imposing the macroscopic gradients of moisture content and temperature on the microscopic field using suitably-defined periodic boundary conditions, which allows the macroscopic mass and thermal fluxes to be defined as averages of the microscopic fluxes over the unit cell. This novel formulation accounts for the intricate coupling of heat and mass transfer at the microscopic scale but reduces to a classical homogenisation approach if a linear relationship is assumed between the microscopic gradient and flux. Simulation results for a sample of spruce wood highlight the potential and flexibility of the new dual-scale approach. In particular, for a given unit cell configuration it is not necessary to propose the form of the macroscopic fluxes prior to the simulations because these are determined as a direct result of the dual-scale formulation.
Resumo:
Evaluation practices in the Higher Education sector have been criticised for having unclear purpose and principles; ignoring the complexity and changing nature of learning and teaching and the environments in which they occur; relying almost exclusively on student ratings of teachers working in classroom settings; lacking reliability and validity; using data for inappropriate purposes; and focusing on accountability and marketing rather than the improvement of learning and teaching. In response to similar criticism from stakeholders, in 2011 Queensland University of Technology (QUT) began a project which aims to reframe the organisation’s approach to the evaluation of learning and teaching. This paper describes the existing evaluation system; the emergence and early development of the project; and formulation of a conceptual framework identifying key dimensions of evaluation. It then compares the draft framework with other conceptualisations and models of evaluation identified in the literature, to determine its validity and suitability for supporting QUT’s plans for the future. Overall, the paper represents a structured evaluation of the REFRAME project at a particular point in its lifecycle. Given that the project follows an evidence based, practice-led process and applies an ongoing action research cycle, the findings are presented in the belief that QUT’s experience is broadly applicable to other institutions which may be contemplating change in relation to evaluation of learning and teaching.
Resumo:
Sampling of the El Chichón stratospheric cloud in early May and in late July, 1982, showed that a significant proportion of the cloud consisted of solid particles between 2 μm and 40 μm size. In addition, many particles may have been part of larger aggregates or clusters that ranged in size from < 10 μm to > 50 μm. The majority of individual grains were angular aluminosilicate glass shards with various amounts of smaller, adhering particles. Surface features on individual grains include sulfuric acid droplets and larger (0.5 μm to 1 μm) sulfate gel droplets with various amounts of Na, Mg, Ca and Fe. The sulfate gels probably formed by the interaction of sulfur-rich gases and solid particles within the cloud soon after eruption. Ca-sulfate laths may have formed by condensation within the plume during eruption, or alternatively, at a later stage by the reaction of sulfuric acid aerosols with ash fragments within the stratospheric cloud. A Wilson-Huang formulation for the settling rate of individual particles qualitatively agrees with the observed particle-size distribution for a period at least four months after injection of material into the stratosphere. This result emphasizes the importance of particle shape in controlling the settling rate of volcanic ash from the stratosphere.
Resumo:
The extraordinary event, for Deleuze, is the object becoming subject – not in the manner of an abstract formulation, such as the substitution of one ideational representation for another but, rather, in the introduction of a vast, new, impersonal plane of subjectivity, populated by object processes and physical phenomena that in Deleuze’s discovery will be shown to constitute their own subjectivities. Deleuze’s polemic of subjectivity (the refusal of the Cartesian subject and the transcendental ego of Husserl) – long attempted by other thinkers – is unique precisely because it heralds the dawning of a new species of objecthood that will qualify as its own peculiar subjectivity. A survey of Deleuze’s early work on subjectivity, Empirisme et subjectivité (Deleuze 1953), Le Bergsonisme (Deleuze 1968), and Logique du sens (Deleuze 1969), brings the architectural reader into a peculiar confrontation with what Deleuze calls the ‘new transcendental field’, the field of subjectproducing effects, which for the philosopher takes the place of both the classical and modern subject. Deleuze’s theory of consciousness and perception is premised on the critique of Husserlian phenomenology; and ipso facto his question is an architectural problematic, even if the name ‘architecture’ is not invoked...
Resumo:
This paper is concerned with recent advances in the development of near wall-normal-free Reynolds-stress models, whose single point closure formulation, based on the inhomogeneity direction concept, is completely independent of the distance from the wall, and of the normal to the wall direction. In the present approach the direction of the inhomogeneity unit vector is decoupled from the coefficient functions of the inhomogeneous terms. A study of the relative influence of the particular closures used for the rapid redistribution terms and for the turbulent diffusion is undertaken, through comparison with measurements, and with a baseline Reynolds-stress model (RSM) using geometric wall normals. It is shown that wall-normal-free rsms can be reformulated as a projection on a tensorial basis that includes the inhomogeneity direction unit vector, suggesting that the theory of the redistribution tensor closure should be revised by taking into account inhomogeneity effects in the tensorial integrity basis used for its representation.
Resumo:
As business process management technology matures, organisations acquire more and more business process models. The management of the resulting collections of process models poses real challenges. One of these challenges concerns model retrieval where support should be provided for the formulation and efficient execution of business process model queries. As queries based on only structural information cannot deal with all querying requirements in practice, there should be support for queries that require knowledge of process model semantics. In this paper we formally define a process model query language that is based on semantic relationships between tasks in process models and is independent of any particular process modelling notation.
Resumo:
Preparing valuations is a time consuming process involving site inspections, research and report formulation. The ease of access to the internet has changed how and where valuations may be undertaken. No longer is it necessary to return to the office to finalise reports, or leave your desk in order to undertake research. This enables more streamlined service delivery and is viewed as a positive. However, it is not without negative impacts. This paper seeks to inform practitioners of the work environment changes flowing from increased access to the internet. It identifies how increased accessibility to, and use of, technology and the internet has, and will continue to, impact upon valuation service provision into the future.
Resumo:
India currently ranks among the top source countries for the Australian education industry and therefore, a better understanding of the concerns and challenges confronted by Indian students is essential. This study was undertaken to assess the needs and expectations of Indian students enrolled at Queensland University of Technology (QUT) that would inform the formulation of strategies to provide superior service to the current and future cohorts of students coming from India. Data collection was undertaken through surveys and focus group meetings. The findings reveal the acute need for more effective dissemination of information prior to the students commencing their programs on both academic and non-academic aspects of university life as well as the resources and support available at QUT. Usage of English in an academic setting, career related services, accommodation, and networking opportunities were identified as some of the key areas of concern by the participants.
Resumo:
The problem of MHD natural convection boundary layer flow of an electrically conducting and optically dense gray viscous fluid along a heated vertical plate is analyzed in the presence of strong cross magnetic field with radiative heat transfer. In the analysis radiative heat flux is considered by adopting optically thick radiation limit. Attempt is made to obtain the solutions valid for liquid metals by taking Pr≪1. Boundary layer equations are transformed in to a convenient dimensionless form by using stream function formulation (SFF) and primitive variable formulation (PVF). Non-similar equations obtained from SFF are then simulated by implicit finite difference (Keller-box) method whereas parabolic partial differential equations obtained from PVF are integrated numerically by hiring direct finite difference method over the entire range of local Hartmann parameter, $xi$ . Further, asymptotic solutions are also obtained for large and small values of local Hartmann parameter $xi$ . A favorable agreement is found between the results for small, large and all values of $xi$ . Numerical results are also demonstrated graphically by showing the effect of various physical parameters on shear stress, rate of heat transfer, velocity and temperature.
Resumo:
Background: The size of the carrier influences drug aerosolization from a dry powder inhaler (DPI) formulation. Lactose particles with irregular shape and rough surface in a variety of sizes are additionally used as carriers; however, contradictory reports exist regarding the effect of carrier size on the dispersion of drug. We examined the influence of the spherical particle size of the biodegradable polylactide-co-glycolide (PLGA) carrier on the aerosolization of a model drug, salbutamol sulphate (SS). Methods: Four different sizes (20-150 µm) of polymer carriers were fabricated using solvent evaporation technique and the dispersion of SS from these carriers was measured by a Twin Stage Impinger (TSI). The size and morphological properties of polymer carriers were determined by laser diffraction and SEM, respectively. Results: The FPF was found to increase from 5.6% to 21.3% with increasing carrier sizeup to150 µm. Conclusions: The aerosolization of drug increased linearly with the size of polymer carriers. For a fixed mass of drug particles in a formulation, the mass of drug particles per unit area of carriers is higher in formulations containing the larger carriers, which leads to an increase in the dispersion of drug due to the increased mechanical forces occurred between the carriers and the device walls.
Resumo:
In this study, natural convection boundary layer flow of thermally radiating fluid along a heated vertical wavy surface is analyzed. Here, the radiative component of heat flux emulates the surface temperature. Governing equations are reduced to dimensionless form, subject to the appropriate transformation. Resulting dimensionless equations are transformed to a set of parabolic partial differential equations by using primitive variable formulation, which are then integrated numerically via iterative finite difference scheme. Emphasis has been given to low Prandtl number fluid. The numerical results obtained for the physical parameters, such as, surface radiation parameter, R, and radiative length parameter, ξ, are discussed in terms of local skin friction and Nusselt number coefficients. Comprehensive interpretation of velocity distribution is also given in the form of streamlines.
Resumo:
The selection of optimal camera configurations (camera locations, orientations etc.) for multi-camera networks remains an unsolved problem. Previous approaches largely focus on proposing various objective functions to achieve different tasks. Most of them, however, do not generalize well to large scale networks. To tackle this, we introduce a statistical formulation of the optimal selection of camera configurations as well as propose a Trans-Dimensional Simulated Annealing (TDSA) algorithm to effectively solve the problem. We compare our approach with a state-of-the-art method based on Binary Integer Programming (BIP) and show that our approach offers similar performance on small scale problems. However, we also demonstrate the capability of our approach in dealing with large scale problems and show that our approach produces better results than 2 alternative heuristics designed to deal with the scalability issue of BIP.
Resumo:
In this paper we propose a framework for both gradient descent image and object alignment in the Fourier domain. Our method centers upon the classical Lucas & Kanade (LK) algorithm where we represent the source and template/model in the complex 2D Fourier domain rather than in the spatial 2D domain. We refer to our approach as the Fourier LK (FLK) algorithm. The FLK formulation is advantageous when one pre-processes the source image and template/model with a bank of filters (e.g. oriented edges, Gabor, etc.) as: (i) it can handle substantial illumination variations, (ii) the inefficient pre-processing filter bank step can be subsumed within the FLK algorithm as a sparse diagonal weighting matrix, (iii) unlike traditional LK the computational cost is invariant to the number of filters and as a result far more efficient, and (iv) this approach can be extended to the inverse compositional form of the LK algorithm where nearly all steps (including Fourier transform and filter bank pre-processing) can be pre-computed leading to an extremely efficient and robust approach to gradient descent image matching. Further, these computational savings translate to non-rigid object alignment tasks that are considered extensions of the LK algorithm such as those found in Active Appearance Models (AAMs).