851 resultados para Graph mining
Resumo:
Coal mining and incineration of solid residues of health services (SRHS) generate several contaminants that are delivered into the environment, such as heavy metals and dioxins. These xenobiotics can lead to oxidative stress overgeneration in organisms and cause different kinds of pathologies, including cancer. In the present study the concentrations of heavy metals such as lead, copper, iron, manganese and zinc in the urine, as well as several enzymatic and non-enzymatic biomarkers of oxidative stress in the blood (contents of lipoperoxidation = TBARS, protein carbonyls = PC, protein thiols = PT, alpha-tocopherol = AT, reduced glutathione = GSH, and the activities of glutathione S-transferase = GST, glutathione reductase = GR, glutathione peroxidase = GPx, catalase = CAT and superoxide dismutase = SOD), in the blood of six different groups (n = 20 each) of subjects exposed to airborne contamination related to coal mining as well as incineration of solid residues of health services (SRHS) after vitamin E (800 mg/day) and vitamin C (500 mg/day) supplementation during 6 months, which were compared to the situation before the antioxidant intervention (Avila et al., Ecotoxicology 18:1150-1157, 2009; Possamai et al., Ecotoxicology 18:1158-1164, 2009). Except for the decreased manganese contents, heavy metal concentrations were elevated in all groups exposed to both sources of airborne contamination when compared to controls. TBARS and PC concentrations, which were elevated before the antioxidant intervention decreased after the antioxidant supplementation. Similarly, the contents of PC, AT and GSH, which were decreased before the antioxidant intervention, reached values near those found in controls, GPx activity was reestablished in underground miners, and SOD, CAT and GST activities were reestablished in all groups. The results showed that the oxidative stress condition detected previously to the antioxidant supplementation in both directly and indirectly subjects exposed to the airborne contamination from coal dusts and SRHS incineration, was attenuated after the antioxidant intervention.
Resumo:
Chagas disease is nowadays the most serious parasitic health problem. This disease is caused by Trypanosoma cruzi. The great number of deaths and the insufficient effectiveness of drugs against this parasite have alarmed the scientific community worldwide. In an attempt to overcome this problem, a model for the design and prediction of new antitrypanosomal agents was obtained. This used a mixed approach, containing simple descriptors based on fragments and topological substructural molecular design descriptors. A data set was made up of 188 compounds, 99 of them characterized an antitrypanosomal activity and 88 compounds that belong to other pharmaceutical categories. The model showed sensitivity, specificity and accuracy values above 85%. Quantitative fragmental contributions were also calculated. Then, and to confirm the quality of the model, 15 structures of molecules tested as antitrypanosomal compounds (that we did not include in this study) were predicted, taking into account the information on the abovementioned calculated fragmental contributions. The model showed an accuracy of 100% which means that the ""in silico"" methodology developed by our team is promising for the rational design of new antitrypanosomal drugs. (C) 2009 Wiley Periodicals, Inc. J Comput Chem 31: 882-894. 2010
Resumo:
The increasing resistance of Mycobacterium tuberculosis to the existing drugs has alarmed the worldwide scientific community. In an attempt to overcome this problem, two models for the design and prediction of new antituberculosis agents were obtained. The first used a mixed approach, containing descriptors based on fragments and the topological substructural molecular design approach (TOPS-MODE) descriptors. The other model used a combination of two-dimensional (2D) and three-dimensional (3D) descriptors. A data set of 167 compounds with great structural variability, 72 of them antituberculosis agents and 95 compounds belonging to other pharmaceutical categories, was analyzed. The first model showed sensitivity, specificity, and accuracy values above 80% and the second one showed values higher than 75% for these statistical indices. Subsequently, 12 structures of imidazoles not included in this study were designed, taking into account the two models. In both cases accuracy was 100%, showing that the methodology in silico developed by us is promising for the rational design of antituberculosis drugs.
Resumo:
The problem of scheduling a parallel program presented by a weighted directed acyclic graph (DAG) to the set of homogeneous processors for minimizing the completion time of the program has been extensively studied as academic optimization problem which occurs in optimizing the execution time of parallel algorithm with parallel computer.In this paper, we propose an application of the Ant Colony Optimization (ACO) to a multiprocessor scheduling problem (MPSP). In the MPSP, no preemption is allowed and each operation demands a setup time on the machines. The problem seeks to compose a schedule that minimizes the total completion time.We therefore rely on heuristics to find solutions since solution methods are not feasible for most problems as such. This novel heuristic searching approach to the multiprocessor based on the ACO algorithm a collection of agents cooperate to effectively explore the search space.A computational experiment is conducted on a suit of benchmark application. By comparing our algorithm result obtained to that of previous heuristic algorithm, it is evince that the ACO algorithm exhibits competitive performance with small error ratio.
Resumo:
The traveling salesman problem is although looking very simple problem but it is an important combinatorial problem. In this thesis I have tried to find the shortest distance tour in which each city is visited exactly one time and return to the starting city. I have tried to solve traveling salesman problem using multilevel graph partitioning approach.Although traveling salesman problem itself very difficult as this problem is belong to the NP-Complete problems but I have tried my best to solve this problem using multilevel graph partitioning it also belong to the NP-Complete problems. I have solved this thesis by using the k-mean partitioning algorithm which divides the problem into multiple partitions and solving each partition separately and its solution is used to improve the overall tour by applying Lin Kernighan algorithm on it. Through all this I got optimal solution which proofs that solving traveling salesman problem through graph partition scheme is good for this NP-Problem and through this we can solved this intractable problem within few minutes.Keywords: Graph Partitioning Scheme, Traveling Salesman Problem.
Resumo:
The problems of finding best facility locations require complete and accurate road network with the corresponding population data in a specific area. However the data obtained in road network databases usually do not fit in this usage. In this paper we propose our procedure of converting the road network database to a road graph which could be used in localization problems. The road network data come from the National road data base in Sweden. The graph derived is cleaned, and reduced to a suitable level for localization problems. The population points are also processed in ordered to match with that graph. The reduction of the graph is done maintaining most of the accuracy for distance measures in the network.