943 resultados para Glycine max L. Merr.
Resumo:
by Max L. Margolis and Alexander Marx
Resumo:
by Max L. Margolis
Resumo:
von Max L. Margolis
Resumo:
Soybean (Glycine max), grown in Iowa and most of the north central region of the United States, has not required regular insecticide use. The soybean aphid, Aphis glycines (Hemiptera: Aphididae), causes yield losses from direct plant feeding, and has been shown to transmit several plant viruses. In Iowa, soybean aphid can colonize soybean fields in June and has developed into outbreaks in July and August capable of reducing yields by nearly 40 percent.
Resumo:
La producción de granos en soja depende, al menos en parte, del fotoperÃodo explorado durante post-floración. Este efecto fotoperiódico ha sido vinculado a los cambios en la duración de la oferta de recursos (efecto indirecto) ya que el fotoperÃodo modifica la duración de la etapa post-floración. Sin embargo, los cambios en el fotoperÃodo también alteran la morfologÃa y el desarrollo de las plantas de soja pudiendo afectar directamente la producción de granos, además de los cambios mencionados en la oferta de recursos. Este tipo de efectos fotoperiódicos directos permitirÃan hacer un uso más eficiente de los recursos para producir granos. En este marco, el objetivo de esta tesis es estudiar los mecanismos asociados a la producción de granos en soja frente a cambios en el fotoperÃodo en post-floración. Se realizaron dos experimentos a campo con tratamientos de extensión artificial del fotoperÃodo para identificar los mecanismos fotoperiódicos involucrados en la producción de granos a nivel de cultivo y a nivel de nudo, en un genotipo comercial de soja. A su vez, se incluyeron tratamientos de sombreo (distintos niveles de radiación incidente) para discriminar cuáles de dichos mecanismos fotoperiódicos están mediados por cambios en la oferta de radiación (indirectos) y cuáles son efectos del fotoperÃodo per se (directos). Además, se realizaron otros dos experimentos utilizando lÃneas casiisogénicas y genotipos comerciales con distinta sensibilidad fotoperiódica para analizar la variabilidad genotÃpica para los mecanismos fotoperiódicos involucrados en la producción de granos. La extensión del fotoperÃodo aumentó la producción de granos a nivel de cultivo a través de cambios en la oferta de recursos (efectos indirectos). Sin embargo, también se observaron efectos directos del fotoperÃodo sobre la producción de granos mediante la modificación de la producción de nudos. La extensión del fotoperÃodo distribuyó espacialmente los destinos, lo cual permitirÃa hacer un uso más eficiente de los recursos al reducir la nterferencia entre vainas que crecen en un mismo nudo. Asimismo, se encontró variabilidad genotÃpica para este mecanismo fotoperiódico directo. A nivel de nudo, la extensión del fotoperÃodo retrasó el inicio de la elongación de vainas dominantes y permitió que se extendiese la floración, abriesen más flores y estableciesen más vainas en posiciones normalmente dominadas del nudo. Este efecto fotoperiódico también distendió la interferencia entre vainas que crecen en un mismo nudo a través cambios en la distribución temporal de los destinos. Sin embargo, no se encontró variabilidad genotÃpica para este mecanismo fotoperiódico bajo condiciones de fotoperÃodo natural. Los resultados obtenidos revelan mecanismos asociados a la producción de granos en soja frente a cambios en el fotoperÃodo en post-floración que son independientes del aumento de la oferta de recursos. Dichos mecanismos involucran efectos fotoperiódicos directos sobre las relaciones intra-nodales entre vainas, mediados por el efecto del fotoperÃodo sobre la producción de nudos y la tasa de desarrollo de las vainas.
Resumo:
Nodules occur in the siliceous calcareous ooze and siliceous marl at Site 503 in the eastern equatorial Pacific. They are present below a depth of about 11 meters throughout the green-colored reduced part of the section down to 228 meters, although they are most abundant between 30 and 85 meters. They are cylindrical or barrel-shaped, up to 70 mm long, and usually have an axial channel through them or are hollow. They appear to have formed around and/or within burrows. XRD studies and microprobe analyses show that they are homogeneous and consist of calcian rhododrosite and minor calcite; Mn is present to the extent of about 30%. Isotopic analyses of the carbonate give carbon values which range from -1.2 per mil to -3.8 per mil, and oxygen isotope compositions vary from +4.0 per mil to +6.0 per mil. These values are different from those for marine-derived carbonates as exemplified by the soft sediment filling of a burrow: d13C, -0.26 per mil; d18O, +1.05 per mil. The carbon isotope data indicate that carbonate derived (possibly indirectly) from seawater was mixed with some produced by organic diagenesis to form the nodules. The d18O values suggest that although they formed near the sediment surface, some modification or the introduction of additional diagenetic carbonate occurred during burial.
Resumo:
At present time, there is a lack of knowledge on the interannual climate-related variability of zooplankton communities of the tropical Atlantic, central Mediterranean Sea, Caspian Sea, and Aral Sea, due to the absence of appropriate databases. In the mid latitudes, the North Atlantic Oscillation (NAO) is the dominant mode of atmospheric fluctuations over eastern North America, the northern Atlantic Ocean and Europe. Therefore, one of the issues that need to be addressed through data synthesis is the evaluation of interannual patterns in species abundance and species diversity over these regions in regard to the NAO. The database has been used to investigate the ecological role of the NAO in interannual variations of mesozooplankton abundance and biomass along the zonal array of the NAO influence. Basic approach to the proposed research involved: (1) development of co-operation between experts and data holders in Ukraine, Russia, Kazakhstan, Azerbaijan, UK, and USA to rescue and compile the oceanographic data sets and release them on CD-ROM, (2) organization and compilation of a database based on FSU cruises to the above regions, (3) analysis of the basin-scale interannual variability of the zooplankton species abundance, biomass, and species diversity.
Resumo:
We have determined (1) the abundance and isotopic composition of pyrite, monosulphide, elemental sulphur, organically bound sulphur, and dissolved sulphide; (2) the partition of ferric and ferrous iron; (3) the organic carbon contents of sediments recovered at two sites drilled on the Peru Margin during Leg 112 of the Ocean Drilling Program. Sediments at both sites are characterised by high levels of organically bound sulphur (OBS). OBS comprises up to 50% of total sedimentary sulphur and up to 1% of bulk sediment. The weight ratio of S to C in organic matter varies from 0.03 to 0.15 (mean = 0.10). Such ratios are like those measured in lithologically similar, but more deeply buried petroleum source rocks of the Monterey and Sisquoc formations in California. The sulphur content of organic matter is not limited by the availability of porewater sulphide. Isotopic data suggest that sulphur is incorporated into organic matter within a metre of the sediment surface, at least partly by reaction with polysulphides. Most inorganic Sulphur occurs as pyrite. Pyrite formation occurred within surface sediments and was limited by the availability of reactive iron. But despite highly reducing sulphidic conditions, only 35-65% of the total iron was converted to sulphide; 10-30% of the total iron still occurs as Fe(III). In surface sediments, the isotopic composition of pyrite is similar to that of both iron monosulphide and dissolved sulphide. Either pyrite, like monosulphide, formed by direct reaction between dissolved sulphide and detrital iron, and/or the sulphur species responsible for converting FeS to FeS2 is isotopically similar to dissolved sulphide. Likely stoichiometries for the reaction between ferric iron and excess sulphide imply a maximum resulting FeS2:FeS ratio of 1:1. Where pyrite dominates the pool of iron sulphides, at least some pyrite must have formed by reaction between monosulphide and elemental sulphur and/or polysulphide. Elemental sulphur (S°) is most abundant in surface sediments and probably formed by oxidation of sulphide diffusing across the sediment-water interface. In surface sediments, S° is isotopically heavier than dissolved sulphide, FeS and FeS2 and is unlikely to have been involved in the conversion of FeS to FeS2. Polysulphides are thus implicated as the link between FeS and FeS2.