977 resultados para Gauss-Bonnet theorem
Resumo:
Formation resistivity is one of the most important parameters to be evaluated in the evaluation of reservoir. In order to acquire the true value of virginal formation, various types of resistivity logging tools have been developed. However, with the increment of the proved reserves, the thickness of interest pay zone is becoming thinner and thinner, especially in the terrestrial deposit oilfield, so that electrical logging tools, limited by the contradictory requirements of resolution and investigation depth of this kinds of tools, can not provide the true value of the formation resistivity. Therefore, resitivity inversion techniques have been popular in the determination of true formation resistivity based on the improving logging data from new tools. In geophysical inverse problems, non-unique solution is inevitable due to the noisy data and deficient measurement information. I address this problem in my dissertation from three aspects, data acquisition, data processing/inversion and applications of the results/ uncertainty evaluation of the non-unique solution. Some other problems in the traditional inversion methods such as slowness speed of the convergence and the initial-correlation results. Firstly, I deal with the uncertainties in the data to be processed. The combination of micro-spherically focused log (MSFL) and dual laterolog(DLL) is the standard program to determine formation resistivity. During the inversion, the readings of MSFL are regarded as the resistivity of invasion zone of the formation after being corrected. However, the errors can be as large as 30 percent due to mud cake influence even if the rugose borehole effects on the readings of MSFL can be ignored. Furthermore, there still are argues about whether the two logs can be quantitatively used to determine formation resisitivities due to the different measurement principles. Thus, anew type of laterolog tool is designed theoretically. The new tool can provide three curves with different investigation depths and the nearly same resolution. The resolution is about 0.4meter. Secondly, because the popular iterative inversion method based on the least-square estimation can not solve problems more than two parameters simultaneously and the new laterolog logging tool is not applied to practice, my work is focused on two parameters inversion (radius of the invasion and the resistivty of virgin information ) of traditional dual laterolog logging data. An unequal weighted damp factors- revised method is developed to instead of the parameter-revised techniques used in the traditional inversion method. In this new method, the parameter is revised not only dependency on the damp its self but also dependency on the difference between the measurement data and the fitting data in different layers. At least 2 iterative numbers are reduced than the older method, the computation cost of inversion is reduced. The damp least-squares inversion method is the realization of Tikhonov's tradeoff theory on the smooth solution and stability of inversion process. This method is realized through linearity of non-linear inversion problem which must lead to the dependency of solution on the initial value of parameters. Thus, severe debates on efficiency of this kinds of methods are getting popular with the developments of non-linear processing methods. The artificial neural net method is proposed in this dissertation. The database of tool's response to formation parameters is built through the modeling of the laterolog tool and then is used to training the neural nets. A unit model is put forward to simplify the dada space and an additional physical limitation is applied to optimize the net after the cross-validation method is done. Results show that the neural net inversion method could replace the traditional inversion method in a single formation and can be used a method to determine the initial value of the traditional method. No matter what method is developed, the non-uniqueness and uncertainties of the solution could be inevitable. Thus, it is wise to evaluate the non-uniqueness and uncertainties of the solution in the application of inversion results. Bayes theorem provides a way to solve such problems. This method is illustrately discussed in a single formation and achieve plausible results. In the end, the traditional least squares inversion method is used to process raw logging data, the calculated oil saturation increased 20 percent than that not be proceed compared to core analysis.
Resumo:
Learning an input-output mapping from a set of examples, of the type that many neural networks have been constructed to perform, can be regarded as synthesizing an approximation of a multi-dimensional function, that is solving the problem of hypersurface reconstruction. From this point of view, this form of learning is closely related to classical approximation techniques, such as generalized splines and regularization theory. This paper considers the problems of an exact representation and, in more detail, of the approximation of linear and nolinear mappings in terms of simpler functions of fewer variables. Kolmogorov's theorem concerning the representation of functions of several variables in terms of functions of one variable turns out to be almost irrelevant in the context of networks for learning. We develop a theoretical framework for approximation based on regularization techniques that leads to a class of three-layer networks that we call Generalized Radial Basis Functions (GRBF), since they are mathematically related to the well-known Radial Basis Functions, mainly used for strict interpolation tasks. GRBF networks are not only equivalent to generalized splines, but are also closely related to pattern recognition methods such as Parzen windows and potential functions and to several neural network algorithms, such as Kanerva's associative memory, backpropagation and Kohonen's topology preserving map. They also have an interesting interpretation in terms of prototypes that are synthesized and optimally combined during the learning stage. The paper introduces several extensions and applications of the technique and discusses intriguing analogies with neurobiological data.
Resumo:
A procedure is given for recognizing sets of inference rules that generate polynomial time decidable inference relations. The procedure can automatically recognize the tractability of the inference rules underlying congruence closure. The recognition of tractability for that particular rule set constitutes mechanical verification of a theorem originally proved independently by Kozen and Shostak. The procedure is algorithmic, rather than heuristic, and the class of automatically recognizable tractable rule sets can be precisely characterized. A series of examples of rule sets whose tractability is non-trivial, yet machine recognizable, is also given. The technical framework developed here is viewed as a first step toward a general theory of tractable inference relations.
Resumo:
This research is concerned with designing representations for analytical reasoning problems (of the sort found on the GRE and LSAT). These problems test the ability to draw logical conclusions. A computer program was developed that takes as input a straightforward predicate calculus translation of a problem, requests additional information if necessary, decides what to represent and how, designs representations capturing the constraints of the problem, and creates and executes a LISP program that uses those representations to produce a solution. Even though these problems are typically difficult for theorem provers to solve, the LISP program that uses the designed representations is very efficient.
Resumo:
One very useful idea in AI research has been the notion of an explicit model of a problem situation. Procedural deduction languages, such as PLANNER, have been valuable tools for building these models. But PLANNER and its relatives are very limited in their ability to describe situations which are only partially specified. This thesis explores methods of increasing the ability of procedural deduction systems to deal with incomplete knowledge. The thesis examines in detail, problems involving negation, implication, disjunction, quantification, and equality. Control structure issues and the problem of modelling change under incomplete knowledge are also considered. Extensive comparisons are also made with systems for mechanica theorem proving.
Resumo:
The constraint paradigm is a model of computation in which values are deduced whenever possible, under the limitation that deductions be local in a certain sense. One may visualize a constraint 'program' as a network of devices connected by wires. Data values may flow along the wires, and computation is performed by the devices. A device computes using only locally available information (with a few exceptions), and places newly derived values on other, locally attached wires. In this way computed values are propagated. An advantage of the constraint paradigm (not unique to it) is that a single relationship can be used in more than one direction. The connections to a device are not labelled as inputs and outputs; a device will compute with whatever values are available, and produce as many new values as it can. General theorem provers are capable of such behavior, but tend to suffer from combinatorial explosion; it is not usually useful to derive all the possible consequences of a set of hypotheses. The constraint paradigm places a certain kind of limitation on the deduction process. The limitations imposed by the constraint paradigm are not the only one possible. It is argued, however, that they are restrictive enough to forestall combinatorial explosion in many interesting computational situations, yet permissive enough to allow useful computations in practical situations. Moreover, the paradigm is intuitive: It is easy to visualize the computational effects of these particular limitations, and the paradigm is a natural way of expressing programs for certain applications, in particular relationships arising in computer-aided design. A number of implementations of constraint-based programming languages are presented. A progression of ever more powerful languages is described, complete implementations are presented and design difficulties and alternatives are discussed. The goal approached, though not quite reached, is a complete programming system which will implicitly support the constraint paradigm to the same extent that LISP, say, supports automatic storage management.
Resumo:
The influence of laser-field parameters, such as intensity and pulse width, on the population of molecular excited state is investigated by using the time-dependent wavepacket method. For a two-state system in intense laser fields, the populations in the upper and lower states are given by the wavefunctions obtained by solving the Schrodinger equation through split-operator scheme. The calculation shows that both the laser intensity and the pulse width have a strong effect on the population in molecular excited state, and that as the common feature of light-matter interaction (LMI), the periodic changing of the population with the evolution time in each state can be interpreted by Rabi oscillation and area-theorem. The results illustrate that by controlling these two parameters, the needed population in excited state of interest can be obtained, which provides the foundation of light manipulation of molecular processes. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
The digital divide has been, at least until very recently, a major theme in policy as well as interdisciplinary academic circles across the world, as well as at a collective global level, as attested by the World Summit on the Information Society. Numerous research papers and volumes have attempted to conceptualise the digital divide and to offer reasoned prescriptive and normative responses. What has been lacking in many of these studies, it is submitted, is a rigorous negotiation of moral and political philosophy, the result being a failure to situate the digital divide - or rather, more widely, information imbalances - in a holistic understanding of social structures of power and wealth. In practice, prescriptive offerings have been little more than philanthropic in tendency, whether private or corporate philanthropy. Instead, a theory of distributive justice is required, one that recovers the tradition of emancipatory, democratic struggle. This much has been said before. What is new here, however, is that the paper suggests a specific formula, the Rawls-Tawney theorem, as a solution at the level of analytical moral-political philosophy. Building on the work of John Rawls and R. H. Tawney, this avoids both the Charybdis of Marxism and the Scylla of liberalism. It delineates some of the details of the meaning of social justice in the information age. Promulgating a conception of isonomia, which while egalitarian eschews arithmetic equality (the equality of misery), the paper hopes to contribute to the emerging ideal of communicative justice in the media-saturated, post-industrial epoch.
Resumo:
This conceptual paper will focus on the presentation of the model developed from empirical, qualitative research covering 20 years of analysis on the relationship between culture and entrepreneurship in Poland. It is aimed at proposing a comprehensive framework that describes the development of entrepreneurial culture. In this empirical model culture is understood as a set of values and beliefs held by a social group that endorse and are conducive to entrepreneurial behaviour; while entrepreneurial behaviour is treated as an expected outcome and narrowed down to opening the company. The model proves that the differentiation between entrepreneurship (behaviour) and entrepreneurs (who demonstrate this behaviour) needs to be recognised in future research. The case of Poland offers a historical example, which can shed more light on the process of cultural change and the role of entrepreneurship and entrepreneurs in the development of entrepreneurial culture. In the case presented, the behaviour of entrepreneurs has been identified as the key factor leading to further development.
Resumo:
Ridoux, O. and Ferr?, S. (2004) Introduction to logical information systems. Information Processing & Management, 40 (3), 383-419. Elsevier
Resumo:
Shen, Q., Zhao, R., Tang, W. (2008). Modelling random fuzzy renewal reward processes. IEEE Transactions on Fuzzy Systems, 16 (5),1379-1385
Resumo:
Douglas, Robert; Cullen, M.J.P.; Roulston, I.; Sewell, M.J., (2005) 'Generalized semi-geostrophic theory on a sphere', Journal of Fluid Mechanics 531 pp.123-157 RAE2008
Resumo:
Wydział Matematyki i Informatyki
Resumo:
The purpose of this paper is to make an example which, first, illustrates Starret’s Spatial Imposibility Theorem, when agents have free mobility; and second, allowes us to get a competitive equilibrium with transportation when agents move only if there is a noticeable difference in utilities that justifies the change of location.
Resumo:
Predictability - the ability to foretell that an implementation will not violate a set of specified reliability and timeliness requirements - is a crucial, highly desirable property of responsive embedded systems. This paper overviews a development methodology for responsive systems, which enhances predictability by eliminating potential hazards resulting from physically-unsound specifications. The backbone of our methodology is the Time-constrained Reactive Automaton (TRA) formalism, which adopts a fundamental notion of space and time that restricts expressiveness in a way that allows the specification of only reactive, spontaneous, and causal computation. Using the TRA model, unrealistic systems - possessing properties such as clairvoyance, caprice, in finite capacity, or perfect timing - cannot even be specified. We argue that this "ounce of prevention" at the specification level is likely to spare a lot of time and energy in the development cycle of responsive systems - not to mention the elimination of potential hazards that would have gone, otherwise, unnoticed. The TRA model is presented to system developers through the CLEOPATRA programming language. CLEOPATRA features a C-like imperative syntax for the description of computation, which makes it easier to incorporate in applications already using C. It is event-driven, and thus appropriate for embedded process control applications. It is object-oriented and compositional, thus advocating modularity and reusability. CLEOPATRA is semantically sound; its objects can be transformed, mechanically and unambiguously, into formal TRA automata for verification purposes, which can be pursued using model-checking or theorem proving techniques. Since 1989, an ancestor of CLEOPATRA has been in use as a specification and simulation language for embedded time-critical robotic processes.